Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o2969. doi: 10.1107/S1600536811041985

3-(4-Bromo­phen­yl)-N,N-dimethyl-3-oxopropan-1-aminium chloride

Rodrigo Abonia a,*, Dieter Schollmeyer b, Danny Arteaga a
PMCID: PMC3247374  PMID: 22219992

Abstract

The title compound, C11H15BrNO+·Cl, was obtained as a precursor within our current program for the synthesis of new β-amino­alcohols via a Mannich-type reaction. The protonated amino N atom is hydrogen bonded to the chloride anion. With exception of one methyl group, the cation is approximately planar (r.m.s. deviation for all non H-atoms = 0.069 Å).

Related literature

For (N,N-dialkyl­amino)­propiophenones, see: Alper et al. (2002); Pupo et al. (2003); Abonia et al. (2004). For details of the synthesis, see: Brandes & Roth (1967); Vogel et al. (1978).graphic file with name e-67-o2969-scheme1.jpg

Experimental

Crystal data

  • C11H15BrNO+·Cl

  • M r = 292.60

  • Monoclinic, Inline graphic

  • a = 10.5050 (8) Å

  • b = 12.5694 (5) Å

  • c = 10.6483 (5) Å

  • β = 115.594 (2)°

  • V = 1268.06 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.16 mm−1

  • T = 295 K

  • 0.44 × 0.26 × 0.26 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) T min = 0.61, T max = 1.00

  • 2564 measured reflections

  • 2564 independent reflections

  • 2258 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.123

  • S = 1.12

  • 2564 reflections

  • 146 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041985/bt5672sup1.cif

e-67-o2969-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041985/bt5672Isup2.hkl

e-67-o2969-Isup2.hkl (126KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041985/bt5672Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯Cl1 1.00 1.99 2.983 (2) 171

Acknowledgments

Financial support from COLCIENCIAS and the Universidad del Valle is gratefully acknowledged.

supplementary crystallographic information

Comment

The classical method for the synthesis of 3-(N,N-dialkylamino)propiophenone salts is the well known Mannich reaction between an alkyl aryl ketone, dialkylamine hydrochloride and polyformaldehyde in refluxing ethanol (Vogel et al., 1978). In this approach, the N,N-dialkylmethyleneammonium chloride (H2C=NR2Cl) is formed in situ, which suffers a Michael type addition from the methylene active ketone to render the expected Mannich adduct (Brandes et al., 1967).

The 3-(N,N-dialkylamino)propiophenone salts are visualized as synthetic equivalents of the less stable and more reactive α,β-unsaturated aryl vinyl ketones. For instance, they can react with nucleophiles like amines through a Michael type addition which could lead to the formation of β-aminoalcohols as is our purpose with compound (I).

In the crystal the title compound adopts an essentially planar structure with a dihedral angle of 5.0 (2)° between the almost planar aminopropane-1-one group (maximal deviation from least square plane 0.038Å at C9) and the phenyl ring. The protonated N10 atom forms a hydrogen bond to Cl1 (N10—H10···Cl1 1.99 Å).

Experimental

A mixture of dimethylamine hydrochloride (2.0 g, 25 mmol), polyformaldehyde (0.754 g, 25 mmol), p-bromoacetophenone (3.66 g, 9.2 mmol), 95% ethanol (4 mL) and conc HCl (0.02 mL) was heated at reflux in an oil bath during 3 h (Vogel et al. (1978)). After complete disappearance of the starting acetophenone, as monitored by thin-layer chromatography, the hot mixture was filtered; acetone (15 mL) was added to the filtrate and cooled into the freezer overnight. The resulting solid was filtered, washed with acetone (2 x 5 mL) and dried at ambient temperature affording the title compound (I), as white solid [yield 94%, m.p. 495 K].

Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation at ambient temperature and in air, from a 1:1 ethanol:acetone solution.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C11H15BrNO+·Cl F(000) = 592
Mr = 292.60 Dx = 1.533 Mg m3
Monoclinic, P21/c Melting point: 495 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 10.5050 (8) Å Cell parameters from 25 reflections
b = 12.5694 (5) Å θ = 64–74°
c = 10.6483 (5) Å µ = 6.16 mm1
β = 115.594 (2)° T = 295 K
V = 1268.06 (12) Å3 Block, brown
Z = 4 0.44 × 0.26 × 0.26 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 2258 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.000
graphite θmax = 73.8°, θmin = 4.7°
θ/2ω scans h = −11→13
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) k = −15→0
Tmin = 0.61, Tmax = 1.00 l = −13→0
2564 measured reflections 3 standard reflections every 60 min
2564 independent reflections intensity decay: 5%

Refinement

Refinement on F2 Secondary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Only H-atom displacement parameters refined
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.3958P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
2564 reflections Δρmax = 0.72 e Å3
146 parameters Δρmin = −0.65 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0047 (5)

Special details

Experimental. IR (KBr disk): 3080, 3024, 2954, 2912, 2628, 2543 (br), 2503, 2440 (br), 1684 (C=O), 1580, 1473, 1391, 1329, 1216, 1065, 1002, 963, 787 cm-1. 1H-NMR (DMSO-d6): 2.79 (s, 6H), 3.39 (t, J = 7.5 Hz, 2H), 3.64 (t, J = 7.2 Hz,2H), 7.78 ("d", J =8.4 Hz, 2H), 7.95 ("d", J = 8.4 Hz, 2H), 10.93 (bs, 1H, NH) p.p.m.; 13C-NMR (DMSO-d6): 33.2, 42.1, 51.5, 127.8, 130.0, 131.9, 134.9, 196.0 (C=O) p.p.m..
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.31084 (4) 0.13998 (3) 0.50877 (3) 0.04655 (18)
Cl1 0.89690 (9) −0.34411 (6) 1.32816 (9) 0.0430 (2)
O1 0.7418 (3) 0.0972 (2) 1.2059 (2) 0.0539 (6)
C1 0.4405 (3) 0.1090 (2) 0.6944 (3) 0.0374 (6)
C2 0.5264 (3) 0.0213 (3) 0.7200 (3) 0.0436 (7)
H2 0.5200 −0.0221 0.6467 0.058 (11)*
C3 0.6223 (3) −0.0025 (3) 0.8549 (3) 0.0411 (7)
H3 0.6794 −0.0623 0.8722 0.040 (9)*
C4 0.6335 (3) 0.0629 (2) 0.9646 (3) 0.0335 (6)
C5 0.5434 (4) 0.1497 (2) 0.9364 (4) 0.0419 (7)
H5 0.5478 0.1922 1.0097 0.060 (11)*
C6 0.4478 (4) 0.1745 (3) 0.8029 (3) 0.0430 (7)
H6 0.3893 0.2336 0.7854 0.054 (11)*
C7 0.7377 (3) 0.0416 (2) 1.1111 (3) 0.0362 (6)
C8 0.8395 (3) −0.0495 (2) 1.1373 (3) 0.0369 (6)
H8A 0.7874 −0.1160 1.1125 0.058 (8)*
H8B 0.8885 −0.0414 1.0788 0.058 (8)*
C9 0.9456 (3) −0.0535 (2) 1.2878 (3) 0.0360 (6)
H9A 0.9986 0.0126 1.3113 0.046 (7)*
H9B 0.8957 −0.0590 1.3459 0.046 (7)*
N10 1.0466 (3) −0.14452 (17) 1.3199 (3) 0.0358 (6)
H10 0.9959 −0.2136 1.3123 0.053 (11)*
C11 1.1447 (5) −0.1452 (3) 1.4695 (4) 0.0578 (11)
H11A 1.2084 −0.2042 1.4889 0.082 (10)*
H11B 1.0919 −0.1518 1.5236 0.082 (10)*
H11C 1.1974 −0.0800 1.4932 0.082 (10)*
C12 1.1245 (4) −0.1462 (3) 1.2322 (4) 0.0526 (9)
H12A 1.0585 −0.1462 1.1357 0.101 (11)*
H12B 1.1817 −0.2092 1.2524 0.101 (11)*
H12C 1.1838 −0.0845 1.2518 0.101 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0519 (3) 0.0423 (2) 0.0400 (2) 0.00146 (13) 0.01472 (18) 0.00820 (13)
Cl1 0.0541 (5) 0.0294 (4) 0.0461 (4) −0.0091 (3) 0.0223 (4) −0.0025 (3)
O1 0.0644 (15) 0.0500 (14) 0.0408 (12) 0.0130 (12) 0.0166 (12) −0.0113 (11)
C1 0.0398 (15) 0.0351 (15) 0.0376 (15) −0.0020 (12) 0.0170 (13) 0.0041 (12)
C2 0.0492 (18) 0.0441 (18) 0.0381 (15) 0.0058 (14) 0.0193 (14) −0.0037 (13)
C3 0.0436 (16) 0.0380 (16) 0.0418 (16) 0.0102 (13) 0.0187 (14) −0.0025 (13)
C4 0.0364 (14) 0.0294 (14) 0.0363 (14) 0.0003 (11) 0.0170 (12) −0.0011 (11)
C5 0.0505 (18) 0.0309 (16) 0.0444 (18) 0.0058 (12) 0.0206 (15) −0.0055 (12)
C6 0.0519 (19) 0.0291 (15) 0.0471 (18) 0.0082 (13) 0.0206 (15) −0.0004 (13)
C7 0.0401 (15) 0.0284 (13) 0.0406 (15) −0.0010 (11) 0.0181 (13) −0.0009 (12)
C8 0.0418 (15) 0.0318 (15) 0.0347 (14) 0.0019 (12) 0.0142 (12) −0.0018 (11)
C9 0.0467 (16) 0.0270 (14) 0.0339 (14) −0.0007 (12) 0.0170 (13) 0.0003 (11)
N10 0.0458 (14) 0.0228 (11) 0.0342 (13) −0.0019 (9) 0.0130 (11) 0.0029 (9)
C11 0.070 (2) 0.0371 (19) 0.0411 (19) 0.0028 (16) 0.0002 (18) 0.0031 (14)
C12 0.057 (2) 0.044 (2) 0.063 (2) 0.0121 (15) 0.0319 (19) 0.0101 (16)

Geometric parameters (Å, °)

Br1—C1 1.894 (3) C2—H2 0.9300
O1—C7 1.213 (4) C3—H3 0.9300
C1—C2 1.375 (4) C5—H5 0.9300
C1—C6 1.394 (4) C6—H6 0.9300
C2—C3 1.385 (4) C8—H8A 0.9700
C3—C4 1.391 (4) C8—H8B 0.9700
C4—C5 1.390 (4) C9—H9A 0.9700
C4—C7 1.493 (4) C9—H9B 0.9700
C5—C6 1.376 (5) C11—H11A 0.9600
C7—C8 1.509 (4) C11—H11B 0.9600
C8—C9 1.507 (4) C11—H11C 0.9600
C9—N10 1.496 (4) C12—H12A 0.9600
N10—C11 1.477 (4) C12—H12B 0.9600
N10—C12 1.484 (5) C12—H12C 0.9600
N10—H10 1.0000
C2—C1—C6 120.9 (3) C1—C6—H6 121.00
C2—C1—Br1 119.1 (2) C5—C6—H6 121.00
C6—C1—Br1 120.0 (2) C7—C8—H8A 109.00
C1—C2—C3 120.0 (3) C7—C8—H8B 109.00
C2—C3—C4 120.2 (3) C9—C8—H8A 109.00
C5—C4—C3 118.7 (3) C9—C8—H8B 109.00
C5—C4—C7 119.3 (3) H8A—C8—H8B 108.00
C3—C4—C7 122.0 (3) N10—C9—H9A 109.00
C6—C5—C4 121.7 (3) N10—C9—H9B 109.00
C5—C6—C1 118.5 (3) C8—C9—H9A 109.00
O1—C7—C4 120.9 (3) C8—C9—H9B 109.00
O1—C7—C8 121.1 (3) H9A—C9—H9B 108.00
C4—C7—C8 118.0 (2) N10—C11—H11A 109.00
C9—C8—C7 111.2 (2) N10—C11—H11B 109.00
N10—C9—C8 113.2 (2) N10—C11—H11C 109.00
C11—N10—C12 111.2 (3) H11A—C11—H11B 109.00
C11—N10—C9 110.2 (2) H11A—C11—H11C 110.00
C12—N10—C9 113.4 (2) H11B—C11—H11C 109.00
C1—C2—H2 120.00 N10—C12—H12A 110.00
C3—C2—H2 120.00 N10—C12—H12B 109.00
C2—C3—H3 120.00 N10—C12—H12C 110.00
C4—C3—H3 120.00 H12A—C12—H12B 109.00
C4—C5—H5 119.00 H12A—C12—H12C 109.00
C6—C5—H5 119.00 H12B—C12—H12C 109.00
C6—C1—C2—C3 −0.5 (5) C5—C4—C7—O1 2.1 (5)
Br1—C1—C2—C3 179.7 (3) C3—C4—C7—O1 −177.0 (3)
C1—C2—C3—C4 −0.8 (5) C5—C4—C7—C8 −176.6 (3)
C2—C3—C4—C5 2.3 (5) C3—C4—C7—C8 4.2 (4)
C2—C3—C4—C7 −178.6 (3) O1—C7—C8—C9 −4.1 (4)
C3—C4—C5—C6 −2.5 (5) C4—C7—C8—C9 174.6 (2)
C7—C4—C5—C6 178.4 (3) C7—C8—C9—N10 178.4 (2)
C4—C5—C6—C1 1.2 (5) C8—C9—N10—C11 −178.4 (3)
C2—C1—C6—C5 0.3 (5) C8—C9—N10—C12 56.2 (4)
Br1—C1—C6—C5 −179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N10—H10···Cl1 1.00 1.99 2.983 (2) 171

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5672).

References

  1. Abonia, R., Insuasty, B., Quiroga, J., Nogueras, M. & Meier, H. (2004). Mini-Rev. Org. Chem. 1, 387–402.
  2. Alper, K., Barry, J. & Balabanov, A. (2002). Epilepsy Behav. 3, 13–18. [DOI] [PubMed]
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  4. Brandes, R. & Roth, H. (1967). Arch. Pharm. 300, 1005–1007. [DOI] [PubMed]
  5. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
  6. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  7. Pupo, A., Uberti, M. & Minneman, K. (2003). Eur. J. Pharmacol. 462, 1–8. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Vogel, A. I., Tatchell, A. R., Furnis, B. S., Hannaford, A. J. & Smith, P. G. W. (1978). Textbook of Practical Organic Chemistry including Qualitative Organic Analysis, 4th ed., p. 773. New York: Longman Group Inc.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041985/bt5672sup1.cif

e-67-o2969-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041985/bt5672Isup2.hkl

e-67-o2969-Isup2.hkl (126KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041985/bt5672Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES