Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o2970–o2971. doi: 10.1107/S1600536811041262

3-(2H-1,3-Benzodioxol-5-ylmeth­yl)-2-(2-meth­oxy­phen­yl)-1,3-thia­zolidin-4-one

Victor Facchinetti a, Claudia R B Gomes a, Wilson Cunico b, Solange M S V Wardell c, James L Wardell d,, Edward R T Tiekink e,*
PMCID: PMC3247375  PMID: 22219993

Abstract

The title mol­ecule, C18H17NO4S, features a 1,3-thia­zolidine ring that is twisted about the S—C(methyl­ene) bond. With reference to this ring, the 1,3-benzodioxole and benzene rings lie to either side and form dihedral angles of 69.72 (16) and 83.60 (14)°, respectively, with the central ring. Significant twisting in the mol­ecule is confirmed by the dihedral angle of 79.91 (13)° formed between the outer rings. Linear supra­molecular chains along the a-axis direction mediated by C—H⋯O inter­actions feature in the crystal packing.

Related literature

For background to the biological activity of thia­zolidinones, see: Cunico et al. (2008a ); Solomon et al. (2007); Kavitha et al. (2006); Sharma et al. (2006); Ravichandran et al. (2009); Rao et al. (2004). For background to the synthesis, see: Cunico et al. (2008b ); Rawal et al. (2008), Gomes et al. (2010), Neuenfeldt et al. (2011). For related studies on the synthesis and biological evaluation of thia­zolidinones, see: Cunico et al. (2006, 2007). For a thia­zolidinone structure, see: Neuenfeldt et al. (2009).graphic file with name e-67-o2970-scheme1.jpg

Experimental

Crystal data

  • C18H17NO4S

  • M r = 343.39

  • Monoclinic, Inline graphic

  • a = 6.8137 (3) Å

  • b = 12.5753 (7) Å

  • c = 18.5071 (9) Å

  • β = 91.825 (3)°

  • V = 1584.96 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 120 K

  • 0.16 × 0.06 × 0.05 mm

Data collection

  • Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.553, T max = 0.746

  • 21683 measured reflections

  • 3625 independent reflections

  • 1935 reflections with I > 2σ(I)

  • R int = 0.159

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.180

  • S = 1.02

  • 3625 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041262/hb6438sup1.cif

e-67-o2970-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041262/hb6438Isup2.hkl

e-67-o2970-Isup2.hkl (174.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041262/hb6438Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.36 3.302 (4) 170
C13—H13⋯O1ii 0.95 2.43 3.352 (4) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

Thiazolidinones constitute an important group of heterocyclic compounds (Cunico et al., 2008a), having valuable biological uses, for example, as anti-malarial (Solomon et al., 2007), anti-microbial (Kavitha et al., 2006), anti-inflammatory (Sharma et al., 2006), and anti-viral agents, especially as anti-HIV agents (Ravichandran et al., 2009; Rao et al., 2004). The main synthetic routes to 1,3-thiazolidin-4-ones involve three components (an aldehyde, an amine and mercaptoacetic acid), either in a one- or two-step process (Cunico et al., 2008a; Rawal et al., 2008), and also under ultrasound irradiation (Neuenfeldt et al., 2011). The structure of 1-thia-4-azaspiro[4.5]decan-3-one has been reported recently (Neuenfeldt et al., 2009). In continuation of our research on thiazolidinones, (Cunico et al., 2006; Cunico et al., 2007; Cunico et al., 2008b; Gomes et al., 2010; Neuenfeldt et al., 2011), we now wish to report the structure of 2-(2-methoxybenzaldehyde)-3-piperonyl-1,3-thiazolidin-4-one, (I), synthesized, as reported from piperonylamine, 2-methoxybenzaldehyde and mercaptoacetic acid under ultrasound irradiation (Neuenfeldt et al., 2011). The sample used in the structure determination was grown from its EtOH solution.

The thiazolidinyl ring in (I), Fig. 1, is twisted about the S1—C3 bond but, the deviations from co-planarity for the five atoms are not great, i.e. the maximum and minimum deviations are 0.109 (1) Å for atom S1 and -0.117 (4) Å for atom C3; the ketone-O1 atom lies 0.244 (2) Å out of the least-squares plane through the five-membered ring. The dioxole ring has an envelope conformation with the C15 atom being the flap atom. The r.m.s. deviation for the 13 non-hydrogen atoms comprising the 1,3-benzodioxole ring is 0.110 Å. With reference to the thiazolidinyl ring, the 1,3-benzodioxole and benzene rings lie to either side and form dihedral angles with this ring of 69.72 (16) and 83.60 (14)°, respectively. The outer rings form a dihedral angle of 79.91 (13)° with each other, indicating that the molecule is highly twisted.

The most prominent feature of the crystal packing is the formation of C—H···O interactions involving the bifurcated carbonyl-O1 atom, Table 1. These lead to linear supramolecular chains along the a axis, Fig. 2.

Experimental

The title compound was synthesized as described in the literature (Neuenfeldt et al., 2011) and crystals were obtained from its EtOH solution.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the linear supramolecular chain propogated down the a axis via C—H···O interactions (orange dashed lines) in the crystal structure of (I).

Crystal data

C18H17NO4S F(000) = 720
Mr = 343.39 Dx = 1.439 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7149 reflections
a = 6.8137 (3) Å θ = 2.9–27.5°
b = 12.5753 (7) Å µ = 0.23 mm1
c = 18.5071 (9) Å T = 120 K
β = 91.825 (3)° Block, colourless
V = 1584.96 (14) Å3 0.16 × 0.06 × 0.05 mm
Z = 4

Data collection

Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer 3625 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode 1935 reflections with I > 2σ(I)
10cm confocal mirrors Rint = 0.159
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 3.2°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −15→16
Tmin = 0.553, Tmax = 0.746 l = −23→24
21683 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0754P)2] where P = (Fo2 + 2Fc2)/3
3625 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.48794 (13) 0.72256 (9) 0.17227 (5) 0.0365 (3)
O1 0.3856 (3) 0.60647 (19) −0.01787 (12) 0.0321 (6)
O2 0.9136 (3) 0.76552 (19) 0.24212 (12) 0.0291 (6)
O3 1.2380 (3) 0.9163 (2) −0.11437 (14) 0.0358 (6)
O4 1.0102 (3) 1.05303 (19) −0.11655 (13) 0.0328 (6)
N1 0.6500 (4) 0.6556 (2) 0.05355 (13) 0.0231 (6)
C1 0.7138 (4) 0.6948 (3) 0.12420 (17) 0.0246 (8)
H1 0.7849 0.7635 0.1174 0.029*
C2 0.4558 (5) 0.6343 (3) 0.04091 (18) 0.0260 (8)
C3 0.3391 (5) 0.6492 (3) 0.10759 (19) 0.0358 (9)
H3A 0.3034 0.5792 0.1279 0.043*
H3B 0.2167 0.6888 0.0957 0.043*
C4 0.8488 (4) 0.6199 (3) 0.16581 (17) 0.0239 (8)
C5 0.9521 (4) 0.6609 (3) 0.22695 (17) 0.0236 (8)
C6 1.0804 (5) 0.5969 (3) 0.26668 (18) 0.0278 (8)
H6 1.1525 0.6253 0.3070 0.033*
C7 1.1036 (5) 0.4905 (3) 0.24740 (18) 0.0300 (9)
H7 1.1917 0.4465 0.2747 0.036*
C8 0.9991 (5) 0.4487 (3) 0.18869 (18) 0.0289 (8)
H8 1.0127 0.3757 0.1765 0.035*
C9 0.8740 (5) 0.5139 (3) 0.14744 (17) 0.0260 (8)
H9 0.8053 0.4856 0.1063 0.031*
C10 0.9967 (5) 0.8064 (3) 0.30861 (18) 0.0321 (9)
H10A 0.9499 0.7642 0.3491 0.048*
H10B 0.9568 0.8807 0.3145 0.048*
H10C 1.1402 0.8022 0.3077 0.048*
C11 0.7881 (5) 0.6555 (3) −0.00479 (17) 0.0281 (8)
H11A 0.7309 0.6146 −0.0460 0.034*
H11B 0.9099 0.6188 0.0119 0.034*
C12 0.8399 (5) 0.7660 (3) −0.03050 (16) 0.0254 (8)
C13 1.0282 (5) 0.7820 (3) −0.05777 (17) 0.0245 (8)
H13 1.1244 0.7273 −0.0570 0.029*
C14 1.0652 (4) 0.8808 (3) −0.08553 (18) 0.0264 (8)
C15 1.1839 (5) 1.0137 (3) −0.1505 (2) 0.0372 (9)
H15A 1.1562 1.0004 −0.2026 0.045*
H15B 1.2917 1.0662 −0.1456 0.045*
C16 0.9303 (5) 0.9626 (3) −0.08612 (18) 0.0285 (8)
C17 0.7480 (5) 0.9499 (3) −0.05749 (17) 0.0280 (8)
H17 0.6563 1.0068 −0.0562 0.034*
C18 0.7038 (5) 0.8489 (3) −0.03018 (17) 0.0260 (8)
H18 0.5781 0.8366 −0.0110 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0270 (5) 0.0496 (7) 0.0329 (5) 0.0028 (4) 0.0009 (4) −0.0113 (5)
O1 0.0314 (13) 0.0343 (16) 0.0300 (14) 0.0017 (11) −0.0083 (11) −0.0041 (12)
O2 0.0332 (13) 0.0292 (15) 0.0245 (13) 0.0021 (11) −0.0070 (10) −0.0028 (11)
O3 0.0291 (13) 0.0316 (16) 0.0472 (16) 0.0008 (11) 0.0082 (11) 0.0041 (12)
O4 0.0329 (14) 0.0290 (15) 0.0367 (14) −0.0010 (11) 0.0049 (11) 0.0016 (12)
N1 0.0231 (14) 0.0276 (17) 0.0183 (13) −0.0027 (12) −0.0017 (11) −0.0009 (12)
C1 0.0246 (17) 0.026 (2) 0.0232 (17) −0.0041 (14) −0.0026 (14) −0.0039 (15)
C2 0.0269 (17) 0.023 (2) 0.0279 (19) −0.0020 (14) −0.0041 (15) 0.0032 (16)
C3 0.0270 (18) 0.050 (3) 0.0305 (19) −0.0054 (17) 0.0024 (15) −0.0001 (18)
C4 0.0199 (16) 0.030 (2) 0.0223 (17) −0.0005 (14) 0.0019 (13) 0.0035 (15)
C5 0.0213 (16) 0.028 (2) 0.0218 (17) −0.0039 (14) 0.0000 (13) −0.0007 (15)
C6 0.0255 (17) 0.035 (2) 0.0225 (18) −0.0062 (16) −0.0016 (14) 0.0015 (16)
C7 0.0307 (19) 0.029 (2) 0.030 (2) 0.0074 (16) 0.0020 (16) 0.0040 (17)
C8 0.0306 (19) 0.027 (2) 0.0294 (19) −0.0010 (15) 0.0006 (15) −0.0041 (16)
C9 0.0280 (18) 0.029 (2) 0.0207 (17) −0.0037 (15) −0.0012 (14) 0.0010 (15)
C10 0.037 (2) 0.031 (2) 0.0284 (19) −0.0037 (17) −0.0062 (15) −0.0091 (17)
C11 0.0308 (18) 0.031 (2) 0.0220 (17) 0.0019 (16) 0.0018 (14) −0.0015 (16)
C12 0.0283 (18) 0.031 (2) 0.0164 (17) −0.0006 (15) −0.0049 (14) −0.0026 (15)
C13 0.0251 (17) 0.024 (2) 0.0239 (17) 0.0047 (14) −0.0016 (14) 0.0000 (15)
C14 0.0231 (17) 0.031 (2) 0.0250 (18) −0.0010 (15) −0.0005 (14) −0.0027 (16)
C15 0.036 (2) 0.032 (2) 0.044 (2) 0.0046 (17) 0.0117 (18) 0.0017 (18)
C16 0.0322 (19) 0.029 (2) 0.0240 (18) −0.0043 (16) −0.0032 (15) 0.0000 (16)
C17 0.0296 (19) 0.030 (2) 0.0239 (18) 0.0047 (15) −0.0020 (15) −0.0021 (16)
C18 0.0225 (16) 0.030 (2) 0.0256 (17) −0.0013 (15) −0.0020 (14) 0.0000 (16)

Geometric parameters (Å, °)

S1—C3 1.799 (4) C7—C8 1.384 (5)
S1—C1 1.836 (3) C7—H7 0.9500
O1—C2 1.225 (4) C8—C9 1.393 (5)
O2—C5 1.372 (4) C8—H8 0.9500
O2—C10 1.433 (4) C9—H9 0.9500
O3—C14 1.382 (4) C10—H10A 0.9800
O3—C15 1.437 (4) C10—H10B 0.9800
O4—C16 1.388 (4) C10—H10C 0.9800
O4—C15 1.445 (4) C11—C12 1.514 (5)
N1—C2 1.363 (4) C11—H11A 0.9900
N1—C1 1.451 (4) C11—H11B 0.9900
N1—C11 1.455 (4) C12—C18 1.395 (5)
C1—C4 1.510 (5) C12—C13 1.408 (5)
C1—H1 1.0000 C13—C14 1.372 (5)
C2—C3 1.501 (5) C13—H13 0.9500
C3—H3A 0.9900 C14—C16 1.379 (5)
C3—H3B 0.9900 C15—H15A 0.9900
C4—C9 1.387 (5) C15—H15B 0.9900
C4—C5 1.411 (4) C16—C17 1.375 (5)
C5—C6 1.382 (5) C17—C18 1.404 (5)
C6—C7 1.395 (5) C17—H17 0.9500
C6—H6 0.9500 C18—H18 0.9500
C3—S1—C1 92.50 (15) C4—C9—H9 119.7
C5—O2—C10 116.5 (3) C8—C9—H9 119.7
C14—O3—C15 104.2 (2) O2—C10—H10A 109.5
C16—O4—C15 103.5 (3) O2—C10—H10B 109.5
C2—N1—C1 118.9 (3) H10A—C10—H10B 109.5
C2—N1—C11 121.3 (3) O2—C10—H10C 109.5
C1—N1—C11 119.1 (3) H10A—C10—H10C 109.5
N1—C1—C4 114.1 (3) H10B—C10—H10C 109.5
N1—C1—S1 105.6 (2) N1—C11—C12 113.3 (3)
C4—C1—S1 112.2 (2) N1—C11—H11A 108.9
N1—C1—H1 108.2 C12—C11—H11A 108.9
C4—C1—H1 108.2 N1—C11—H11B 108.9
S1—C1—H1 108.2 C12—C11—H11B 108.9
O1—C2—N1 123.9 (3) H11A—C11—H11B 107.7
O1—C2—C3 124.3 (3) C18—C12—C13 120.5 (3)
N1—C2—C3 111.8 (3) C18—C12—C11 121.5 (3)
C2—C3—S1 108.0 (2) C13—C12—C11 117.9 (3)
C2—C3—H3A 110.1 C14—C13—C12 116.4 (3)
S1—C3—H3A 110.1 C14—C13—H13 121.8
C2—C3—H3B 110.1 C12—C13—H13 121.8
S1—C3—H3B 110.1 C13—C14—C16 123.2 (3)
H3A—C3—H3B 108.4 C13—C14—O3 127.3 (3)
C9—C4—C5 119.0 (3) C16—C14—O3 109.4 (3)
C9—C4—C1 123.5 (3) O3—C15—O4 106.9 (3)
C5—C4—C1 117.5 (3) O3—C15—H15A 110.3
O2—C5—C6 124.8 (3) O4—C15—H15A 110.3
O2—C5—C4 114.9 (3) O3—C15—H15B 110.3
C6—C5—C4 120.3 (3) O4—C15—H15B 110.3
C5—C6—C7 119.8 (3) H15A—C15—H15B 108.6
C5—C6—H6 120.1 C17—C16—C14 121.4 (3)
C7—C6—H6 120.1 C17—C16—O4 128.5 (3)
C8—C7—C6 120.4 (3) C14—C16—O4 110.1 (3)
C8—C7—H7 119.8 C16—C17—C18 116.8 (3)
C6—C7—H7 119.8 C16—C17—H17 121.6
C7—C8—C9 119.8 (3) C18—C17—H17 121.6
C7—C8—H8 120.1 C12—C18—C17 121.7 (3)
C9—C8—H8 120.1 C12—C18—H18 119.2
C4—C9—C8 120.7 (3) C17—C18—H18 119.2
C2—N1—C1—C4 115.2 (3) C5—C4—C9—C8 0.1 (5)
C11—N1—C1—C4 −74.1 (4) C1—C4—C9—C8 −179.2 (3)
C2—N1—C1—S1 −8.5 (4) C7—C8—C9—C4 −1.8 (5)
C11—N1—C1—S1 162.2 (2) C2—N1—C11—C12 101.4 (4)
C3—S1—C1—N1 14.3 (2) C1—N1—C11—C12 −69.0 (4)
C3—S1—C1—C4 −110.5 (3) N1—C11—C12—C18 −33.1 (4)
C1—N1—C2—O1 175.9 (3) N1—C11—C12—C13 149.5 (3)
C11—N1—C2—O1 5.4 (5) C18—C12—C13—C14 −2.1 (5)
C1—N1—C2—C3 −4.0 (4) C11—C12—C13—C14 175.3 (3)
C11—N1—C2—C3 −174.5 (3) C12—C13—C14—C16 1.4 (5)
O1—C2—C3—S1 −165.0 (3) C12—C13—C14—O3 179.1 (3)
N1—C2—C3—S1 14.9 (4) C15—O3—C14—C13 166.6 (3)
C1—S1—C3—C2 −16.7 (3) C15—O3—C14—C16 −15.4 (4)
N1—C1—C4—C9 −14.6 (4) C14—O3—C15—O4 23.8 (4)
S1—C1—C4—C9 105.4 (3) C16—O4—C15—O3 −23.0 (3)
N1—C1—C4—C5 166.0 (3) C13—C14—C16—C17 0.9 (5)
S1—C1—C4—C5 −73.9 (3) O3—C14—C16—C17 −177.2 (3)
C10—O2—C5—C6 −7.3 (4) C13—C14—C16—O4 179.2 (3)
C10—O2—C5—C4 172.6 (3) O3—C14—C16—O4 1.1 (4)
C9—C4—C5—O2 −178.2 (3) C15—O4—C16—C17 −168.2 (3)
C1—C4—C5—O2 1.2 (4) C15—O4—C16—C14 13.7 (4)
C9—C4—C5—C6 1.7 (4) C14—C16—C17—C18 −2.3 (5)
C1—C4—C5—C6 −179.0 (3) O4—C16—C17—C18 179.8 (3)
O2—C5—C6—C7 178.1 (3) C13—C12—C18—C17 0.8 (5)
C4—C5—C6—C7 −1.8 (5) C11—C12—C18—C17 −176.6 (3)
C5—C6—C7—C8 0.0 (5) C16—C17—C18—C12 1.5 (5)
C6—C7—C8—C9 1.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9···O1i 0.95 2.36 3.302 (4) 170
C13—H13···O1ii 0.95 2.43 3.352 (4) 163

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6438).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Cunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405–3408.
  3. Cunico, W., Gomes, C. R. B., Ferreira, M. L. G., Capri, L. R., Soares, M. & Wardell, S. M. S. V. (2007). Tetrahedron Lett. 48, 6217–6220.
  4. Cunico, W., Gomes, C. R. B. & Vellasco, W. T. Jr (2008a). Mini-Rev. Org. Chem 5, 336–344.
  5. Cunico, W., Vellasco, W. T. Jr, Moreth, M. & Gomes, C. R. B. (2008b). Lett. Org. Chem 5, 349–352.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gomes, C. R. B., Moreth, M., Facchinetti, V., de Souza, M. V. N., Vellasco Junior, W. T., Lourenço, M. C. S. & Cunico, W. (2010). Lett. Drug Des. Discov 7, 353–358.
  8. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Kavitha, C. V., Nanjunda Swamy, B. S., Mantelingu, K., Doreswamy, S., Sridhar, M. A., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. 14, 2290. [DOI] [PubMed]
  10. Neuenfeldt, P. D., Drawanz, B. B., Cunico, W., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3190–o3191. [DOI] [PMC free article] [PubMed]
  11. Neuenfeldt, P. D., Duval, A. R., Drawanz, B. B., Rosales, P. F., Gomes, C. R. B., Pereira, C. M. P. & Cunico, W. (2011). Ultrason. Sonochem. 18, 65–67. [DOI] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Rao, A., Chimirri, A., Ferro, S., Monforte, A. M., Monforte, P. & Maria Zappalà, M. (2004). Arkivoc, pp. 147–155
  14. Ravichandran, V., Prashantha Kumar, B. R., Sankar, S. & Agrawal, R. K. (2009). Eur. J. Med. Chem. 44, 1180–1187. [DOI] [PubMed]
  15. Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800–2806. [DOI] [PubMed]
  16. Sharma, S., Singh, T., Mittal, R., Saxena, K. K., Srivastava, V. K. & Kumar, A. (2006). Arch. Pharm. Chem. Life Sci 339, 145–152. [DOI] [PubMed]
  17. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Solomon, V. R., Haq, W., Srivastava, K., Puri, S. K. & Katti, S. B. (2007). J. Med. Chem. 50, 394–398. [DOI] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041262/hb6438sup1.cif

e-67-o2970-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041262/hb6438Isup2.hkl

e-67-o2970-Isup2.hkl (174.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041262/hb6438Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES