Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o2976. doi: 10.1107/S160053681104219X

2,4-Dichloro-N-(3,5-dichloro­phen­yl)benzene­sulfonamide

Vinola Z Rodrigues a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3247380  PMID: 22219998

Abstract

In the title compound, C12H7Cl4NO2S, the N—H bond in the C—SO2—NH—C segment is syn with respect to the ortho-Cl atom of the sulfonyl­benzene ring and one of the meta-Cl atoms of the aniline ring. The C—SO2—NH—C torsion angle is −93.9 (2)°. The benzene rings are tilted relative to each other by 61.9 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-substituted amides, see: Gowda et al. (2000), on methane­sulfonamides, see: Gowda et al. (2007), on aryl­sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Gowda et al. (2009); Shetty & Gowda (2005) and on N-(chloro)-aryl­sulfonamides, see: Gowda et al. (2003).graphic file with name e-67-o2976-scheme1.jpg

Experimental

Crystal data

  • C12H7Cl4NO2S

  • M r = 371.05

  • Triclinic, Inline graphic

  • a = 8.075 (1) Å

  • b = 9.479 (1) Å

  • c = 10.103 (2) Å

  • α = 84.90 (2)°

  • β = 78.49 (1)°

  • γ = 79.28 (1)°

  • V = 743.46 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.48 × 0.44 × 0.32 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.663, T max = 0.754

  • 4974 measured reflections

  • 3027 independent reflections

  • 2423 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.104

  • S = 1.03

  • 3027 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104219X/rz2649sup1.cif

e-67-o2976-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104219X/rz2649Isup2.hkl

e-67-o2976-Isup2.hkl (148.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104219X/rz2649Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.07 (2) 2.889 (3) 177 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS fellowship.

supplementary crystallographic information

Comment

The sulfonamide moiety is the constituent of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Gowda et al., 2009; Shetty & Gowda, 2005) and N-(chloro)-arylsulfonamides (Gowda et al., 2003), in the present work, the crystal structure of 2,4-dichloro-N-(3,5-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1).

In (I), the N—H bond in the C—SO2—NH—C segment is syn with respect to the ortho-Cl atom of the sulfonylbenzene ring and one of the meta-Cl atoms of the anilino ring. The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -93.9 (2)°, compared to the value of -48.2 (2)° in 2,4-dichloro-N-(3,4-dichlorophenyl)-benzenesulfonamide (II) (Gowda et al., 2009). The sulfonyl and the aniline benzene rings are tilted relative to each other by 61.9 (1)°, compared to the value of 68.9 (1)° in (II). The other bond parameters in (I) are similar to those observed in (II) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). In the crystal, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into dimeric units. Part of the crystal structure is shown in Fig. 2.

Experimental

A solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N-(3,5-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like light pink single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

The H atoms of the NH group was located in a difference Fourier map and refined with the N—H distance restrained to 0.86 (2) Å and with Uiso(H) = 1.2Ueq(N). All other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å,and refined with Uiso(H) values set at 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C12H7Cl4NO2S Z = 2
Mr = 371.05 F(000) = 372
Triclinic, P1 Dx = 1.657 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.075 (1) Å Cell parameters from 2149 reflections
b = 9.479 (1) Å θ = 2.6–27.7°
c = 10.103 (2) Å µ = 0.93 mm1
α = 84.90 (2)° T = 293 K
β = 78.49 (1)° Prism, light pink
γ = 79.28 (1)° 0.48 × 0.44 × 0.32 mm
V = 743.46 (19) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 3027 independent reflections
Radiation source: fine-focus sealed tube 2423 reflections with I > 2σ(I)
graphite Rint = 0.014
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→10
Tmin = 0.663, Tmax = 0.754 k = −11→11
4974 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2632P] where P = (Fo2 + 2Fc2)/3
3027 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.36 e Å3
1 restraint Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2231 (3) 0.3850 (2) 0.6848 (2) 0.0383 (5)
C2 0.3719 (3) 0.3794 (3) 0.7381 (2) 0.0401 (5)
C3 0.5311 (3) 0.3381 (3) 0.6599 (3) 0.0454 (6)
H3 0.6298 0.3351 0.6951 0.055*
C4 0.5432 (3) 0.3010 (3) 0.5291 (3) 0.0481 (6)
C5 0.3988 (3) 0.3048 (3) 0.4738 (3) 0.0520 (6)
H5 0.4086 0.2792 0.3855 0.062*
C6 0.2400 (3) 0.3475 (3) 0.5529 (2) 0.0466 (6)
H6 0.1419 0.3512 0.5167 0.056*
C7 −0.0988 (3) 0.2062 (2) 0.9076 (2) 0.0397 (5)
C8 −0.1821 (3) 0.1626 (3) 1.0339 (3) 0.0431 (5)
H8 −0.1863 0.2132 1.1096 0.052*
C9 −0.2587 (3) 0.0423 (3) 1.0452 (3) 0.0442 (6)
C10 −0.2563 (3) −0.0345 (3) 0.9350 (3) 0.0482 (6)
H10 −0.3092 −0.1149 0.9440 0.058*
C11 −0.1723 (3) 0.0125 (3) 0.8107 (3) 0.0455 (6)
C12 −0.0919 (3) 0.1312 (3) 0.7950 (3) 0.0436 (5)
H12 −0.0345 0.1599 0.7105 0.052*
N1 −0.0178 (3) 0.3284 (2) 0.9021 (2) 0.0470 (5)
H1N −0.017 (4) 0.358 (3) 0.975 (2) 0.056*
O1 −0.1015 (2) 0.4407 (2) 0.68767 (18) 0.0528 (5)
O2 0.0147 (2) 0.57618 (18) 0.83484 (17) 0.0488 (4)
Cl1 0.36340 (9) 0.42083 (9) 0.90298 (7) 0.0630 (2)
Cl2 0.74509 (9) 0.25049 (9) 0.43243 (8) 0.0707 (2)
Cl3 −0.36154 (9) −0.01334 (8) 1.20398 (7) 0.0631 (2)
Cl4 −0.16598 (10) −0.08094 (8) 0.66939 (8) 0.0692 (2)
S1 0.01475 (7) 0.44418 (6) 0.77605 (6) 0.04076 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0362 (12) 0.0411 (12) 0.0409 (12) −0.0147 (10) −0.0093 (9) 0.0030 (10)
C2 0.0375 (12) 0.0447 (13) 0.0423 (13) −0.0134 (10) −0.0122 (10) −0.0015 (10)
C3 0.0359 (12) 0.0481 (14) 0.0548 (15) −0.0136 (11) −0.0101 (11) 0.0010 (11)
C4 0.0428 (14) 0.0466 (14) 0.0531 (15) −0.0151 (11) 0.0007 (11) 0.0003 (11)
C5 0.0567 (16) 0.0606 (16) 0.0418 (14) −0.0193 (13) −0.0069 (12) −0.0047 (12)
C6 0.0455 (14) 0.0566 (15) 0.0436 (14) −0.0189 (12) −0.0148 (11) 0.0007 (11)
C7 0.0274 (11) 0.0447 (13) 0.0487 (13) −0.0103 (10) −0.0098 (9) 0.0027 (10)
C8 0.0339 (12) 0.0466 (13) 0.0491 (14) −0.0096 (10) −0.0080 (10) 0.0016 (11)
C9 0.0288 (11) 0.0477 (14) 0.0547 (14) −0.0092 (10) −0.0071 (10) 0.0089 (11)
C10 0.0354 (13) 0.0437 (13) 0.0681 (17) −0.0129 (11) −0.0125 (12) 0.0020 (12)
C11 0.0335 (12) 0.0459 (13) 0.0584 (15) −0.0044 (10) −0.0117 (11) −0.0081 (12)
C12 0.0311 (12) 0.0501 (14) 0.0495 (14) −0.0098 (10) −0.0057 (10) −0.0004 (11)
N1 0.0489 (12) 0.0557 (12) 0.0430 (11) −0.0264 (10) −0.0104 (10) 0.0028 (10)
O1 0.0390 (9) 0.0673 (12) 0.0570 (11) −0.0153 (8) −0.0199 (8) 0.0081 (9)
O2 0.0475 (10) 0.0473 (10) 0.0518 (10) −0.0135 (8) −0.0059 (8) −0.0004 (8)
Cl1 0.0509 (4) 0.0957 (6) 0.0500 (4) −0.0160 (4) −0.0187 (3) −0.0163 (4)
Cl2 0.0511 (4) 0.0808 (5) 0.0728 (5) −0.0128 (4) 0.0116 (3) −0.0131 (4)
Cl3 0.0566 (4) 0.0687 (5) 0.0631 (4) −0.0273 (4) −0.0004 (3) 0.0123 (3)
Cl4 0.0673 (5) 0.0699 (5) 0.0748 (5) −0.0190 (4) −0.0071 (4) −0.0263 (4)
S1 0.0344 (3) 0.0473 (3) 0.0433 (3) −0.0139 (3) −0.0101 (2) 0.0040 (3)

Geometric parameters (Å, °)

C1—C6 1.383 (3) C7—N1 1.424 (3)
C1—C2 1.402 (3) C8—C9 1.381 (3)
C1—S1 1.765 (2) C8—H8 0.9300
C2—C3 1.376 (3) C9—C10 1.378 (4)
C2—Cl1 1.731 (2) C9—Cl3 1.738 (2)
C3—C4 1.378 (4) C10—C11 1.381 (4)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.383 (4) C11—C12 1.383 (3)
C4—Cl2 1.731 (3) C11—Cl4 1.733 (3)
C5—C6 1.379 (4) C12—H12 0.9300
C5—H5 0.9300 N1—S1 1.618 (2)
C6—H6 0.9300 N1—H1N 0.815 (16)
C7—C12 1.381 (3) O1—S1 1.4254 (17)
C7—C8 1.386 (3) O2—S1 1.4319 (18)
C6—C1—C2 118.7 (2) C7—C8—H8 120.7
C6—C1—S1 118.24 (17) C10—C9—C8 122.1 (2)
C2—C1—S1 123.06 (18) C10—C9—Cl3 119.25 (18)
C3—C2—C1 120.3 (2) C8—C9—Cl3 118.6 (2)
C3—C2—Cl1 117.68 (17) C9—C10—C11 117.6 (2)
C1—C2—Cl1 121.97 (18) C9—C10—H10 121.2
C2—C3—C4 119.5 (2) C11—C10—H10 121.2
C2—C3—H3 120.3 C10—C11—C12 122.3 (2)
C4—C3—H3 120.3 C10—C11—Cl4 119.07 (19)
C3—C4—C5 121.6 (2) C12—C11—Cl4 118.7 (2)
C3—C4—Cl2 118.57 (19) C7—C12—C11 118.5 (2)
C5—C4—Cl2 119.9 (2) C7—C12—H12 120.8
C6—C5—C4 118.4 (2) C11—C12—H12 120.8
C6—C5—H5 120.8 C7—N1—S1 127.32 (17)
C4—C5—H5 120.8 C7—N1—H1N 115 (2)
C5—C6—C1 121.6 (2) S1—N1—H1N 114 (2)
C5—C6—H6 119.2 O1—S1—O2 119.41 (11)
C1—C6—H6 119.2 O1—S1—N1 109.48 (10)
C12—C7—C8 120.9 (2) O2—S1—N1 105.64 (11)
C12—C7—N1 122.7 (2) O1—S1—C1 106.86 (11)
C8—C7—N1 116.4 (2) O2—S1—C1 108.24 (10)
C9—C8—C7 118.7 (2) N1—S1—C1 106.57 (11)
C9—C8—H8 120.7
C6—C1—C2—C3 0.3 (3) Cl3—C9—C10—C11 −179.56 (18)
S1—C1—C2—C3 −177.25 (18) C9—C10—C11—C12 0.4 (4)
C6—C1—C2—Cl1 −178.67 (18) C9—C10—C11—Cl4 179.96 (17)
S1—C1—C2—Cl1 3.7 (3) C8—C7—C12—C11 0.9 (3)
C1—C2—C3—C4 −0.5 (4) N1—C7—C12—C11 179.0 (2)
Cl1—C2—C3—C4 178.53 (19) C10—C11—C12—C7 −1.1 (4)
C2—C3—C4—C5 0.2 (4) Cl4—C11—C12—C7 179.34 (17)
C2—C3—C4—Cl2 179.58 (18) C12—C7—N1—S1 30.7 (3)
C3—C4—C5—C6 0.3 (4) C8—C7—N1—S1 −151.21 (19)
Cl2—C4—C5—C6 −179.1 (2) C7—N1—S1—O1 21.3 (3)
C4—C5—C6—C1 −0.5 (4) C7—N1—S1—O2 151.1 (2)
C2—C1—C6—C5 0.2 (4) C7—N1—S1—C1 −93.9 (2)
S1—C1—C6—C5 177.9 (2) C6—C1—S1—O1 0.0 (2)
C12—C7—C8—C9 −0.1 (3) C2—C1—S1—O1 177.56 (19)
N1—C7—C8—C9 −178.3 (2) C6—C1—S1—O2 −129.83 (19)
C7—C8—C9—C10 −0.6 (4) C2—C1—S1—O2 47.8 (2)
C7—C8—C9—Cl3 179.45 (17) C6—C1—S1—N1 116.95 (19)
C8—C9—C10—C11 0.5 (4) C2—C1—S1—N1 −65.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.82 (2) 2.07 (2) 2.889 (3) 177 (3)

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2649).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., D’Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.
  5. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o1940. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A 55, 779–790.
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  9. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600–606.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104219X/rz2649sup1.cif

e-67-o2976-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104219X/rz2649Isup2.hkl

e-67-o2976-Isup2.hkl (148.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104219X/rz2649Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES