Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o2981–o2982. doi: 10.1107/S1600536811042012

10α-Hy­droxy-4,9-dimethyl-13-[(4-phenyl­piperazin-1-yl)meth­yl]-3,8,15-trioxatetra­cyclo­[10.3.0.02,4.07,9]tetra­decan-14-one

Mohamed Moumou a, Ahmed Benharref a, Abdelghani Oudahmane b, Ahmed Elhakmaoui c,*, Moha Berraho a
PMCID: PMC3247384  PMID: 22220002

Abstract

The title compound, C25H34N2O5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule contains a fused five- and ten-membered ring system. The ten-membered ring adopts an approximate chair–chair conformation, while the five-membered ring is in an envelope conformation, with the C atom closest to the hy­droxy group forming the flap. The piperazine ring is in a chair conformation. In the crystal, O—H⋯O hydrogen bonds connect mol­ecules into chains along [100]. Weak inter­molecular C—H⋯O hydrogen bonds are also present.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009). For the synthesis, see: Moumou et al. (2010). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o2981-scheme1.jpg

Experimental

Crystal data

  • C25H34N2O5

  • M r = 442.54

  • Orthorhombic, Inline graphic

  • a = 7.7666 (5) Å

  • b = 9.6059 (8) Å

  • c = 31.181 (2) Å

  • V = 2326.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.45 × 0.36 × 0.28 mm

Data collection

  • Bruker X8 APEX CCD area-detector diffractometer

  • 10922 measured reflections

  • 2723 independent reflections

  • 2362 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 1.06

  • 2723 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042012/lh5350sup1.cif

e-67-o2981-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042012/lh5350Isup2.hkl

e-67-o2981-Isup2.hkl (131KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 2.11 2.902 (3) 161
C14—H14B⋯O5ii 0.96 2.59 3.289 (3) 129
C21—H21⋯O1iii 0.93 2.51 3.441 (4) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

supplementary crystallographic information

Comment

The natural sesquiterpene lactone, 9α - hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al., (1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009), in order to prepare products of value which can be used in the pharmacological industry. In this context, we have synthesed from 9α-hydroxyparthenolide the 6β,7α- epoxy-9apha hydoxy partenolide (9α-hydroxy-4,8-dimethyl-12- methylen-3,14-dioxa-tricyclo[9.3.0.02,4]tetradec-7-en-13-one) (Moumou et al., 2010) and then prepared the title compound (I). The crystal structure of (I) is determined herein. The molecule contains a fused ring system and phenylpiperazine group as a substituent to a lactone ring. The molecular structure, Fig.1, shows that the lactone ring adopts an envelope conformation, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.347 (2)Å and φ = 75.6 (3)°. The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.570 (2) Å, θ = 180.0 (2)° and φ2 = 150 (10)°. In the crystal structure, molecules are connected through O—H···O hydrogen bonds (Fig.2), forming chains along [100].

Experimental

A mixture of 6β,7α-epoxy-9α-hydoxypartenolide (9α-hydroxy-4,8-dimethyl-12- methylen-3,14-dioxa-tricyclo[9.3.0.02,4]tetradec-7-en-13-one) (0.5 g, 2 mmol) and one equivalent of 1-phenylpiperazine in EtOH (20 ml) was stirred for twelve hours at room temperature. Then the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 895 mg (1.8 mmol) of the title compound, which was recrystallized in ethyl acetate.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine), O—H = 0.82Å and with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus the Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing view showing O–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C25H34N2O5 F(000) = 952
Mr = 442.54 Dx = 1.264 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 10922 reflections
a = 7.7666 (5) Å θ = 2.7–26.4°
b = 9.6059 (8) Å µ = 0.09 mm1
c = 31.181 (2) Å T = 298 K
V = 2326.2 (3) Å3 Prism, colourless
Z = 4 0.45 × 0.36 × 0.28 mm

Data collection

Bruker X8 APEX CCD area-detector diffractometer 2362 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
graphite θmax = 26.4°, θmin = 2.7°
φ and ω scans h = −9→9
10922 measured reflections k = −11→7
2723 independent reflections l = −38→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.4378P] where P = (Fo2 + 2Fc2)/3
2723 reflections (Δ/σ)max < 0.001
293 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5441 (3) 0.2316 (2) 0.91768 (7) 0.0347 (5)
H1 0.4879 0.1665 0.8979 0.042*
C2 0.5370 (3) 0.1777 (2) 0.96267 (7) 0.0327 (5)
H2 0.6143 0.2252 0.9827 0.039*
C3 0.4930 (3) 0.0341 (3) 0.97477 (7) 0.0349 (5)
C4 0.5705 (3) −0.0184 (3) 1.01607 (8) 0.0415 (6)
H4A 0.4920 −0.0840 1.0293 0.050*
H4B 0.5859 0.0591 1.0356 0.050*
C5 0.7438 (3) −0.0892 (3) 1.00857 (8) 0.0435 (6)
H5A 0.7981 −0.1076 1.0360 0.052*
H5B 0.7252 −0.1777 0.9943 0.052*
C6 0.8616 (3) −0.0009 (3) 0.98170 (8) 0.0383 (6)
H6 0.8588 0.0985 0.9888 0.046*
C7 0.9154 (3) −0.0312 (3) 0.93753 (8) 0.0383 (6)
C8 0.9740 (3) 0.0848 (3) 0.90772 (8) 0.0404 (6)
H8 1.0567 0.0437 0.8876 0.048*
C9 0.8307 (4) 0.1514 (3) 0.88067 (8) 0.0416 (6)
H9A 0.7518 0.0783 0.8720 0.050*
H9B 0.8825 0.1885 0.8548 0.050*
C10 0.7253 (3) 0.2680 (2) 0.90184 (7) 0.0311 (5)
H10 0.7914 0.3042 0.9262 0.037*
C11 0.5317 (3) 0.4573 (3) 0.89329 (8) 0.0414 (6)
C12 0.6839 (3) 0.3904 (3) 0.87154 (7) 0.0376 (6)
H12 0.6455 0.3523 0.8440 0.045*
C13 0.8251 (4) 0.4953 (3) 0.86298 (8) 0.0431 (6)
H13A 0.7729 0.5793 0.8516 0.052*
H13B 0.8786 0.5194 0.8901 0.052*
C14 0.4374 (4) −0.0747 (3) 0.94329 (9) 0.0473 (6)
H14A 0.3988 −0.0306 0.9174 0.071*
H14B 0.3451 −0.1284 0.9554 0.071*
H14C 0.5328 −0.1349 0.9369 0.071*
C15 1.1040 (4) 0.5453 (3) 0.83687 (8) 0.0519 (7)
H15A 1.1452 0.5467 0.8662 0.062*
H15B 1.0668 0.6387 0.8295 0.062*
C16 0.9013 (3) 0.4473 (3) 0.78904 (8) 0.0490 (7)
H16A 0.8618 0.5393 0.7808 0.059*
H16B 0.8051 0.3836 0.7864 0.059*
C17 1.0437 (4) 0.4021 (3) 0.75924 (8) 0.0509 (7)
H17A 1.0794 0.3082 0.7664 0.061*
H17B 1.0018 0.4018 0.7299 0.061*
C18 1.2483 (4) 0.5027 (4) 0.80761 (8) 0.0542 (8)
H18A 1.3418 0.5691 0.8100 0.065*
H18B 1.2915 0.4122 0.8163 0.065*
C19 1.3260 (4) 0.4797 (3) 0.73301 (8) 0.0448 (6)
C20 1.3357 (4) 0.3688 (3) 0.70444 (8) 0.0473 (6)
H20 1.2490 0.3020 0.7040 0.057*
C21 1.4749 (4) 0.3575 (4) 0.67644 (8) 0.0571 (8)
H21 1.4797 0.2835 0.6573 0.069*
C22 1.6044 (4) 0.4538 (4) 0.67685 (9) 0.0645 (9)
H22 1.6992 0.4434 0.6589 0.077*
C23 1.5932 (4) 0.5657 (4) 0.70384 (10) 0.0714 (10)
H23 1.6792 0.6331 0.7035 0.086*
C24 1.4562 (4) 0.5797 (4) 0.73158 (9) 0.0615 (8)
H24 1.4503 0.6568 0.7496 0.074*
C26 0.8708 (4) −0.1630 (3) 0.91409 (9) 0.0535 (7)
H26A 0.8222 −0.2288 0.9338 0.080*
H26B 0.9730 −0.2015 0.9015 0.080*
H26C 0.7886 −0.1428 0.8919 0.080*
N1 0.9589 (3) 0.4506 (2) 0.83356 (6) 0.0398 (5)
N2 1.1901 (3) 0.4959 (2) 0.76275 (6) 0.0461 (6)
O1 0.4819 (3) 0.5750 (2) 0.89055 (6) 0.0565 (5)
O2 0.3686 (2) 0.14622 (18) 0.97984 (5) 0.0400 (4)
O3 0.4524 (2) 0.36458 (19) 0.91853 (5) 0.0447 (4)
O5 1.0321 (2) −0.0547 (2) 0.97319 (6) 0.0543 (5)
O4 1.0600 (2) 0.19268 (19) 0.92937 (7) 0.0538 (5)
H4 1.1392 0.1600 0.9436 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0319 (12) 0.0320 (12) 0.0403 (12) −0.0020 (11) −0.0021 (11) 0.0019 (10)
C2 0.0281 (11) 0.0336 (12) 0.0364 (11) −0.0008 (11) 0.0030 (10) 0.0008 (9)
C3 0.0274 (11) 0.0351 (12) 0.0421 (12) −0.0020 (10) 0.0068 (10) 0.0002 (10)
C4 0.0464 (14) 0.0380 (13) 0.0402 (12) −0.0040 (12) 0.0048 (11) 0.0072 (11)
C5 0.0486 (14) 0.0374 (14) 0.0446 (13) 0.0030 (12) −0.0051 (12) 0.0065 (11)
C6 0.0304 (12) 0.0343 (13) 0.0502 (13) 0.0040 (11) −0.0070 (11) −0.0018 (11)
C7 0.0330 (12) 0.0338 (13) 0.0479 (13) 0.0062 (11) −0.0035 (11) −0.0007 (11)
C8 0.0326 (12) 0.0363 (13) 0.0522 (14) 0.0066 (11) 0.0058 (11) −0.0029 (11)
C9 0.0485 (15) 0.0362 (13) 0.0401 (12) 0.0049 (13) 0.0062 (12) 0.0012 (11)
C10 0.0303 (12) 0.0302 (12) 0.0328 (11) −0.0005 (10) −0.0014 (9) 0.0020 (9)
C11 0.0404 (13) 0.0420 (14) 0.0417 (13) 0.0051 (13) −0.0057 (11) 0.0079 (11)
C12 0.0414 (13) 0.0336 (13) 0.0377 (12) 0.0019 (11) −0.0008 (11) 0.0024 (10)
C13 0.0503 (14) 0.0352 (13) 0.0438 (13) −0.0031 (13) 0.0073 (12) 0.0012 (11)
C14 0.0444 (14) 0.0394 (15) 0.0582 (15) −0.0041 (13) 0.0002 (13) −0.0033 (12)
C15 0.0527 (16) 0.0597 (18) 0.0434 (13) −0.0120 (16) 0.0041 (12) −0.0116 (13)
C16 0.0419 (14) 0.0639 (18) 0.0413 (13) −0.0058 (15) −0.0014 (11) 0.0009 (13)
C17 0.0485 (15) 0.0646 (18) 0.0396 (13) −0.0098 (16) −0.0015 (12) −0.0086 (13)
C18 0.0467 (14) 0.073 (2) 0.0431 (13) −0.0101 (15) 0.0003 (12) −0.0112 (15)
C19 0.0479 (14) 0.0498 (15) 0.0368 (12) −0.0031 (14) 0.0010 (11) 0.0005 (12)
C20 0.0538 (16) 0.0476 (15) 0.0403 (13) −0.0030 (15) 0.0013 (13) 0.0019 (12)
C21 0.069 (2) 0.0614 (18) 0.0413 (14) 0.0143 (19) 0.0050 (14) 0.0000 (14)
C22 0.0538 (18) 0.098 (3) 0.0419 (15) 0.003 (2) 0.0075 (13) 0.0051 (17)
C23 0.0574 (19) 0.099 (3) 0.0578 (18) −0.030 (2) 0.0051 (16) 0.0013 (19)
C24 0.0633 (18) 0.068 (2) 0.0528 (16) −0.0199 (19) 0.0080 (15) −0.0106 (15)
C26 0.0663 (19) 0.0335 (14) 0.0608 (16) 0.0041 (14) 0.0044 (15) −0.0079 (13)
N1 0.0409 (11) 0.0424 (12) 0.0362 (10) −0.0028 (11) 0.0019 (9) −0.0001 (9)
N2 0.0454 (12) 0.0543 (14) 0.0386 (10) −0.0091 (12) 0.0029 (10) −0.0090 (10)
O1 0.0590 (12) 0.0477 (11) 0.0627 (11) 0.0188 (11) 0.0078 (10) 0.0146 (9)
O2 0.0310 (8) 0.0414 (9) 0.0477 (9) 0.0018 (8) 0.0081 (7) 0.0000 (8)
O3 0.0333 (9) 0.0458 (10) 0.0548 (10) 0.0089 (9) 0.0045 (8) 0.0136 (9)
O5 0.0371 (10) 0.0594 (12) 0.0662 (12) 0.0123 (10) −0.0069 (9) 0.0060 (10)
O4 0.0350 (10) 0.0429 (11) 0.0834 (14) −0.0036 (9) −0.0090 (10) 0.0003 (10)

Geometric parameters (Å, °)

C1—O3 1.463 (3) C13—H13A 0.9700
C1—C2 1.496 (3) C13—H13B 0.9700
C1—C10 1.532 (3) C14—H14A 0.9600
C1—H1 0.9800 C14—H14B 0.9600
C2—O2 1.445 (3) C14—H14C 0.9600
C2—C3 1.471 (3) C15—N1 1.452 (3)
C2—H2 0.9800 C15—C18 1.502 (4)
C3—O2 1.456 (3) C15—H15A 0.9700
C3—C14 1.497 (4) C15—H15B 0.9700
C3—C4 1.508 (3) C16—N1 1.459 (3)
C4—C5 1.526 (4) C16—C17 1.508 (4)
C4—H4A 0.9700 C16—H16A 0.9700
C4—H4B 0.9700 C16—H16B 0.9700
C5—C6 1.503 (4) C17—N2 1.455 (3)
C5—H5A 0.9700 C17—H17A 0.9700
C5—H5B 0.9700 C17—H17B 0.9700
C6—O5 1.446 (3) C18—N2 1.471 (3)
C6—C7 1.468 (3) C18—H18A 0.9700
C6—H6 0.9800 C18—H18B 0.9700
C7—O5 1.452 (3) C19—C20 1.390 (4)
C7—C26 1.502 (4) C19—C24 1.395 (4)
C7—C8 1.521 (4) C19—N2 1.414 (3)
C8—O4 1.406 (3) C20—C21 1.394 (4)
C8—C9 1.536 (3) C20—H20 0.9300
C8—H8 0.9800 C21—C22 1.367 (5)
C9—C10 1.537 (3) C21—H21 0.9300
C9—H9A 0.9700 C22—C23 1.368 (5)
C9—H9B 0.9700 C22—H22 0.9300
C10—C12 1.542 (3) C23—C24 1.378 (4)
C10—H10 0.9800 C23—H23 0.9300
C11—O1 1.198 (3) C24—H24 0.9300
C11—O3 1.339 (3) C26—H26A 0.9600
C11—C12 1.507 (3) C26—H26B 0.9600
C12—C13 1.513 (4) C26—H26C 0.9600
C12—H12 0.9800 O4—H4 0.8200
C13—N1 1.451 (3)
O3—C1—C2 105.50 (18) N1—C13—H13A 108.4
O3—C1—C10 104.70 (18) C12—C13—H13A 108.4
C2—C1—C10 114.50 (19) N1—C13—H13B 108.4
O3—C1—H1 110.6 C12—C13—H13B 108.4
C2—C1—H1 110.6 H13A—C13—H13B 107.4
C10—C1—H1 110.6 C3—C14—H14A 109.5
O2—C2—C3 59.88 (14) C3—C14—H14B 109.5
O2—C2—C1 116.93 (19) H14A—C14—H14B 109.5
C3—C2—C1 125.0 (2) C3—C14—H14C 109.5
O2—C2—H2 114.5 H14A—C14—H14C 109.5
C3—C2—H2 114.5 H14B—C14—H14C 109.5
C1—C2—H2 114.5 N1—C15—C18 111.4 (2)
O2—C3—C2 59.19 (15) N1—C15—H15A 109.3
O2—C3—C14 113.4 (2) C18—C15—H15A 109.3
C2—C3—C14 123.6 (2) N1—C15—H15B 109.3
O2—C3—C4 114.79 (19) C18—C15—H15B 109.3
C2—C3—C4 116.1 (2) H15A—C15—H15B 108.0
C14—C3—C4 116.2 (2) N1—C16—C17 111.6 (2)
C3—C4—C5 111.7 (2) N1—C16—H16A 109.3
C3—C4—H4A 109.3 C17—C16—H16A 109.3
C5—C4—H4A 109.3 N1—C16—H16B 109.3
C3—C4—H4B 109.3 C17—C16—H16B 109.3
C5—C4—H4B 109.3 H16A—C16—H16B 108.0
H4A—C4—H4B 107.9 N2—C17—C16 110.4 (2)
C6—C5—C4 111.8 (2) N2—C17—H17A 109.6
C6—C5—H5A 109.3 C16—C17—H17A 109.6
C4—C5—H5A 109.3 N2—C17—H17B 109.6
C6—C5—H5B 109.3 C16—C17—H17B 109.6
C4—C5—H5B 109.3 H17A—C17—H17B 108.1
H5A—C5—H5B 107.9 N2—C18—C15 111.1 (2)
O5—C6—C7 59.77 (15) N2—C18—H18A 109.4
O5—C6—C5 117.3 (2) C15—C18—H18A 109.4
C7—C6—C5 125.7 (2) N2—C18—H18B 109.4
O5—C6—H6 114.2 C15—C18—H18B 109.4
C7—C6—H6 114.2 H18A—C18—H18B 108.0
C5—C6—H6 114.2 C20—C19—C24 117.9 (3)
O5—C7—C6 59.36 (15) C20—C19—N2 123.0 (2)
O5—C7—C26 112.7 (2) C24—C19—N2 119.1 (2)
C6—C7—C26 123.9 (2) C19—C20—C21 120.2 (3)
O5—C7—C8 113.3 (2) C19—C20—H20 119.9
C6—C7—C8 120.8 (2) C21—C20—H20 119.9
C26—C7—C8 112.9 (2) C22—C21—C20 120.8 (3)
O4—C8—C7 112.9 (2) C22—C21—H21 119.6
O4—C8—C9 107.5 (2) C20—C21—H21 119.6
C7—C8—C9 115.1 (2) C21—C22—C23 119.4 (3)
O4—C8—H8 107.0 C21—C22—H22 120.3
C7—C8—H8 107.0 C23—C22—H22 120.3
C9—C8—H8 107.0 C22—C23—C24 120.8 (3)
C8—C9—C10 117.0 (2) C22—C23—H23 119.6
C8—C9—H9A 108.0 C24—C23—H23 119.6
C10—C9—H9A 108.0 C23—C24—C19 120.8 (3)
C8—C9—H9B 108.0 C23—C24—H24 119.6
C10—C9—H9B 108.0 C19—C24—H24 119.6
H9A—C9—H9B 107.3 C7—C26—H26A 109.5
C1—C10—C9 117.5 (2) C7—C26—H26B 109.5
C1—C10—C12 100.36 (18) H26A—C26—H26B 109.5
C9—C10—C12 113.83 (19) C7—C26—H26C 109.5
C1—C10—H10 108.2 H26A—C26—H26C 109.5
C9—C10—H10 108.2 H26B—C26—H26C 109.5
C12—C10—H10 108.2 C13—N1—C15 108.97 (19)
O1—C11—O3 121.5 (2) C13—N1—C16 112.8 (2)
O1—C11—C12 128.6 (2) C15—N1—C16 108.6 (2)
O3—C11—C12 109.9 (2) C19—N2—C17 117.8 (2)
C11—C12—C13 111.3 (2) C19—N2—C18 113.5 (2)
C11—C12—C10 102.31 (19) C17—N2—C18 109.8 (2)
C13—C12—C10 117.7 (2) C2—O2—C3 60.93 (15)
C11—C12—H12 108.4 C11—O3—C1 110.30 (18)
C13—C12—H12 108.4 C6—O5—C7 60.87 (15)
C10—C12—H12 108.4 C8—O4—H4 109.5
N1—C13—C12 115.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O2i 0.82 2.11 2.902 (3) 161
C14—H14B···O5ii 0.96 2.59 3.289 (3) 129
C21—H21···O1iii 0.93 2.51 3.441 (4) 174

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5350).

References

  1. Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405. [DOI] [PubMed]
  2. Bellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.
  3. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91. [DOI] [PubMed]
  9. Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395. [DOI] [PMC free article] [PubMed]
  10. Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349. [DOI] [PubMed]
  11. Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D’Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042012/lh5350sup1.cif

e-67-o2981-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042012/lh5350Isup2.hkl

e-67-o2981-Isup2.hkl (131KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES