Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o2994–o2995. doi: 10.1107/S1600536811042280

Opipramol dihydro­chloride

Richard Betz a,*, Thomas Gerber a, Eric Hosten a, Budanoor P Siddaraju b, Hemmige S Yathirajan b
PMCID: PMC3247396  PMID: 22220014

Abstract

The title compound (systematic name: 4-{3-[2-aza­tricyclo­[9.4.0.03,8]penta­deca-1(15),3,5,7,11,13-hexaen-2-yl]prop­yl}-1-(2-hy­droxy­eth­yl)piperazine-1,4-diium dichloride), C23H31N3O+·2Cl, is the dihydro­chloride of a piperazine derivative bearing a bulky 3-(5H-dibenz[b,f]azepin-5-yl)propyl substituent. Protonation took place on both N atoms of the piperazine unit. The diaza­cyclo­hexane ring adopts a chair conformation. N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonding as well as C—H⋯O contacts connect the components into a three-dimensional network in the crystal. Two C—H⋯π contacts are also observed.

Related literature

For applications of opipramol, see: Moller et al. (2001). For related structures, see: Jasinski et al. (2010); Fun et al. (2011); Siddegowda, Butcher et al. (2011); Siddegowda, Jasinski et al. (2011); Swamy et al. (2007). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975); Boessenkool & Boeyens (1980).graphic file with name e-67-o2994-scheme1.jpg

Experimental

Crystal data

  • C23H31N3O2+·2Cl

  • M r = 436.41

  • Orthorhombic, Inline graphic

  • a = 33.6581 (6) Å

  • b = 9.4265 (2) Å

  • c = 6.8978 (1) Å

  • V = 2188.52 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 200 K

  • 0.51 × 0.27 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 20068 measured reflections

  • 5253 independent reflections

  • 4854 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.071

  • S = 1.03

  • 5253 reflections

  • 274 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 2293 Friedel pairs

  • Flack parameter: −0.004 (33)

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042280/mw2030sup1.cif

e-67-o2994-sup1.cif (30.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811042280/mw2030Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042280/mw2030Isup3.hkl

e-67-o2994-Isup3.hkl (257.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042280/mw2030Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H81⋯Cl1i 0.79 (2) 2.39 (2) 3.1701 (14) 169 (2)
N2—H72⋯Cl1 0.82 (2) 2.212 (19) 3.0057 (13) 163.0 (15)
N3—H73⋯Cl2ii 0.98 (3) 2.03 (3) 2.9972 (12) 171 (2)
C5—H5A⋯Cl1iii 0.99 2.82 3.7065 (15) 149
C5—H5A⋯O1ii 0.99 2.59 3.3373 (18) 133
C14—H14⋯Cl1iv 0.95 2.83 3.7233 (14) 157
C31—H31A⋯O1ii 0.99 2.54 3.2446 (18) 128
C31—H31B⋯Cl2v 0.99 2.75 3.5518 (14) 139
C32—H32B⋯Cl1ii 0.99 2.85 3.8246 (13) 169
C32—H32A⋯Cl2vi 0.99 2.85 3.7213 (16) 148
C6—H6B⋯Cl2vi 0.99 2.76 3.6634 (18) 152
C34—H34A⋯Cl2 0.99 2.82 3.5471 (13) 131
C16—H16⋯Cg2iv 0.95 2.98 3.6402 (16) 128
C23—H23⋯Cg2vii 0.95 2.67 3.4805 (18) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

BPS thanks the University of Mysore for research facilities. HSY thanks R. L. Fine Chem., Bengaluru, for the gift sample of the title compound.

supplementary crystallographic information

Comment

Opipramol (systematic IUPAC name: 4-(3-{2-azatricyclo[9.4.0.03,8]pentadeca- 1(15),3,5,7,11,13-hexaen-2-yl}propyl)-1-(2-hydroxyethyl)piperazin-1,4-diium dichloride is an antidepressant and anxiolytic typically used in the treatment of generalized anxiety disorder (Moller et al., 2001). Opipramol is a tricyclic compound with no reuptake-inhibiting properties. However, it has pronounced D2-, 5-HT2-, and H1-blocking potential and high affinity to sigma receptors (sigma-1 and sigma-2). The crystal structures of opipramol dipicrate (Jasinski et al., 2010), opipramol (Fun et al., 2011), opipramolium fumarate (Siddegowda, Butcher et al., 2011) and flupentixol dihydrochloride (Siddegowda, Jasinski et al., 2011) have been reported recently. In view of the importance of the title compound we herein report its molecular and crystal structure.

Protonation took place exclusively on both nitrogen atoms of the piperazine unit. The diazacyclohexane ring adopts a 4C1 (N3CN2) conformation (Cremer & Pople, 1975). The more rigid skeleton of the seven-membered ring adopts a conformation in between a TC2 and a C6 conformation (Q2: 0.6128 (14) Å, Q3: 0.2043 (14) Å, π2: 177.14 (14)°, π3: 178.9 (4)°) (Boessenkool & Boeyens, 1980). The nitrogen atom sticks out of the least-squares plane defined by its atoms by 0.451 (1) Å (Fig. 1).

Apart from classical hydrogen bonds of the N–H···Cl and the O–H···Cl type, the crystal structure features a multitude of C–H···Cl contacts and two C–H···O contacts whose ranges invariably fall at least 0.1 Å below the sum of van-der-Waals radii of the respective atoms participating. The C–H···Cl contacts involve hydrogen atoms of methylene groups – both intracyclic as well as those on the hydroxyethyl side-chain – as well as one hydrogen atom on a phenyl ring. The C–H···O contacts all involve hydrogen atoms of the methylene groups located in the piperazine moiety and in the hydrocarbon chain connecting this to the remainder of the molecule. Both chloride anions attain pentacoordination via their combined contacts with hydrogen atoms, however, one of the anions features four instead of three C–H-supported contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level while the C–H···O contacts require a C11(7)C11(9) descriptor on the same level. A DDDDDDD descriptor on the unitary level is necessary to capture the C–H···Cl contacts. Furthermore, two C–H···Cg contacts can be observed involving hydrogen atoms on the phenyl rings as donors and the phenyl moiety comprised of the carbon atoms C11–C16. All of these interactions serve to connect the cations and anions into a three-dimensional network in the crystal. The shortest intercentroid distance between two aromatic systems was measured at 4.7319 (9) Å and is apparent between two different phenyl moieties.

The packing of the title compound in the crystal is shown in Figure 2.

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem. Ltd., Bangalore, India. The compound was recrystallized from a 1:1 mixture of butan-1-one and benzene.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic and vinylic hydrogen atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The oxygen-bound H atom as well as both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C23H31N3O2+·2Cl Dx = 1.324 Mg m3
Mr = 436.41 Melting point = 482–484 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 9954 reflections
a = 33.6581 (6) Å θ = 2.4–28.3°
b = 9.4265 (2) Å µ = 0.32 mm1
c = 6.8978 (1) Å T = 200 K
V = 2188.52 (7) Å3 Platelet, green
Z = 4 0.51 × 0.27 × 0.14 mm
F(000) = 928

Data collection

Bruker APEXII CCD diffractometer 4854 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
graphite θmax = 28.3°, θmin = 2.2°
φ and ω scans h = −44→44
20068 measured reflections k = −12→9
5253 independent reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.0541P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
5253 reflections Δρmax = 0.24 e Å3
274 parameters Δρmin = −0.21 e Å3
1 restraint Absolute structure: Flack (1983), 2293 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.004 (33)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.33522 (3) 0.24837 (14) 0.58052 (17) 0.0359 (3)
H81 0.3356 (6) 0.173 (2) 0.631 (4) 0.044 (6)*
N1 0.05595 (3) 0.73088 (11) 0.60732 (17) 0.0210 (2)
N2 0.19011 (3) 0.51107 (11) 0.64833 (18) 0.0161 (2)
H72 0.1886 (5) 0.5036 (16) 0.530 (3) 0.020 (4)*
N3 0.27628 (3) 0.49616 (11) 0.69361 (16) 0.0174 (2)
H73 0.2750 (7) 0.500 (2) 0.835 (5) 0.074 (8)*
C1 0.00179 (4) 0.79746 (17) 0.2855 (2) 0.0294 (3)
H1 −0.0128 0.7742 0.1721 0.035*
C2 0.03133 (4) 0.89067 (17) 0.2622 (2) 0.0310 (3)
H2 0.0356 0.9237 0.1337 0.037*
C3 0.08286 (3) 0.64016 (15) 0.7199 (2) 0.0213 (3)
H3A 0.0719 0.5428 0.7253 0.026*
H3B 0.0846 0.6765 0.8543 0.026*
C4 0.12436 (4) 0.63572 (14) 0.6312 (2) 0.0239 (3)
H4A 0.1224 0.6198 0.4896 0.029*
H4B 0.1379 0.7275 0.6529 0.029*
C5 0.14816 (3) 0.51695 (13) 0.7235 (2) 0.0186 (2)
H5A 0.1487 0.5309 0.8657 0.022*
H5B 0.1349 0.4253 0.6970 0.022*
C6 0.31889 (4) 0.49360 (15) 0.6266 (3) 0.0237 (3)
H6A 0.3322 0.5816 0.6702 0.028*
H6B 0.3195 0.4921 0.4832 0.028*
C7 0.34174 (4) 0.36661 (17) 0.7029 (2) 0.0285 (3)
H7A 0.3705 0.3890 0.7074 0.034*
H7B 0.3328 0.3441 0.8362 0.034*
C11 0.01455 (3) 0.69862 (13) 0.6216 (2) 0.0207 (2)
C12 −0.01079 (4) 0.72710 (15) 0.4633 (2) 0.0232 (3)
C13 −0.05001 (4) 0.67850 (16) 0.4742 (2) 0.0292 (3)
H13 −0.0675 0.6980 0.3694 0.035*
C14 −0.06431 (4) 0.60348 (16) 0.6307 (3) 0.0332 (3)
H14 −0.0910 0.5707 0.6328 0.040*
C15 −0.03922 (4) 0.57682 (16) 0.7842 (3) 0.0332 (4)
H15 −0.0485 0.5242 0.8924 0.040*
C16 −0.00025 (4) 0.62655 (16) 0.7816 (2) 0.0272 (3)
H16 0.0164 0.6110 0.8908 0.033*
C21 0.06763 (4) 0.87575 (14) 0.5829 (2) 0.0219 (3)
C22 0.05776 (4) 0.94775 (16) 0.4107 (2) 0.0250 (3)
C23 0.07445 (5) 1.08179 (16) 0.3787 (3) 0.0338 (4)
H23 0.0679 1.1315 0.2633 0.041*
C24 0.10005 (5) 1.14375 (17) 0.5089 (3) 0.0400 (4)
H24 0.1118 1.2331 0.4808 0.048*
C25 0.10856 (5) 1.07525 (18) 0.6806 (3) 0.0383 (4)
H25 0.1256 1.1186 0.7728 0.046*
C26 0.09204 (4) 0.94189 (17) 0.7189 (3) 0.0294 (3)
H26 0.0975 0.8961 0.8386 0.035*
C31 0.21421 (3) 0.63744 (14) 0.7062 (2) 0.0199 (3)
H31A 0.2154 0.6432 0.8494 0.024*
H31B 0.2012 0.7248 0.6578 0.024*
C32 0.25605 (3) 0.62810 (13) 0.6249 (2) 0.0199 (2)
H32A 0.2549 0.6281 0.4815 0.024*
H32B 0.2715 0.7121 0.6666 0.024*
C33 0.25223 (3) 0.37093 (13) 0.6327 (2) 0.0190 (2)
H33A 0.2653 0.2829 0.6782 0.023*
H33B 0.2508 0.3674 0.4895 0.023*
C34 0.21058 (4) 0.37928 (14) 0.7157 (2) 0.0191 (2)
H34A 0.1952 0.2952 0.6742 0.023*
H34B 0.2119 0.3790 0.8591 0.023*
Cl1 0.172378 (10) 0.43277 (4) 0.23488 (5) 0.03102 (9)
Cl2 0.217571 (10) 0.00951 (3) 0.62670 (6) 0.02579 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0419 (6) 0.0321 (6) 0.0337 (7) 0.0108 (5) −0.0089 (5) −0.0078 (5)
N1 0.0168 (4) 0.0210 (5) 0.0252 (6) 0.0029 (4) −0.0012 (4) 0.0058 (5)
N2 0.0176 (5) 0.0147 (5) 0.0161 (6) 0.0006 (4) −0.0018 (4) 0.0003 (4)
N3 0.0177 (5) 0.0200 (6) 0.0146 (5) 0.0015 (4) −0.0007 (4) −0.0010 (4)
C1 0.0297 (7) 0.0346 (8) 0.0240 (7) 0.0056 (6) −0.0057 (5) −0.0003 (6)
C2 0.0354 (7) 0.0339 (8) 0.0237 (8) 0.0069 (6) 0.0000 (6) 0.0072 (6)
C3 0.0179 (5) 0.0240 (6) 0.0219 (6) 0.0043 (5) 0.0001 (5) 0.0045 (6)
C4 0.0197 (6) 0.0267 (7) 0.0253 (7) 0.0060 (5) 0.0020 (5) 0.0062 (6)
C5 0.0150 (5) 0.0198 (6) 0.0209 (6) 0.0013 (4) −0.0003 (5) 0.0007 (6)
C6 0.0164 (5) 0.0307 (7) 0.0241 (6) −0.0005 (5) 0.0006 (6) −0.0026 (6)
C7 0.0212 (6) 0.0377 (8) 0.0268 (7) 0.0080 (6) −0.0065 (5) −0.0059 (6)
C11 0.0181 (5) 0.0179 (6) 0.0262 (6) 0.0036 (4) 0.0004 (5) −0.0018 (6)
C12 0.0224 (6) 0.0200 (7) 0.0272 (7) 0.0040 (5) −0.0030 (5) −0.0045 (6)
C13 0.0223 (7) 0.0274 (7) 0.0378 (8) 0.0037 (6) −0.0064 (6) −0.0095 (7)
C14 0.0221 (6) 0.0259 (7) 0.0517 (10) −0.0012 (5) 0.0044 (7) −0.0092 (8)
C15 0.0259 (7) 0.0245 (7) 0.0492 (11) 0.0017 (6) 0.0117 (6) 0.0049 (7)
C16 0.0229 (6) 0.0276 (7) 0.0312 (8) 0.0053 (6) 0.0038 (5) 0.0044 (6)
C21 0.0166 (6) 0.0210 (6) 0.0283 (8) 0.0044 (5) 0.0031 (5) 0.0019 (6)
C22 0.0228 (6) 0.0242 (7) 0.0280 (7) 0.0052 (6) 0.0045 (6) 0.0045 (6)
C23 0.0374 (8) 0.0238 (8) 0.0403 (9) 0.0067 (6) 0.0072 (7) 0.0092 (7)
C24 0.0353 (8) 0.0211 (8) 0.0637 (12) −0.0021 (7) 0.0059 (8) 0.0027 (8)
C25 0.0284 (7) 0.0265 (8) 0.0598 (13) 0.0009 (6) −0.0061 (7) −0.0085 (7)
C26 0.0258 (6) 0.0265 (7) 0.0359 (8) 0.0040 (6) −0.0024 (6) 0.0002 (7)
C31 0.0190 (5) 0.0152 (6) 0.0256 (7) 0.0010 (5) −0.0004 (5) −0.0032 (5)
C32 0.0218 (6) 0.0159 (5) 0.0220 (6) −0.0002 (4) −0.0004 (5) 0.0013 (6)
C33 0.0190 (5) 0.0161 (5) 0.0218 (6) 0.0023 (4) −0.0001 (5) −0.0019 (6)
C34 0.0204 (5) 0.0146 (6) 0.0224 (6) 0.0019 (5) −0.0002 (5) 0.0026 (6)
Cl1 0.02975 (16) 0.0431 (2) 0.02020 (15) 0.00569 (15) −0.00392 (14) −0.00588 (17)
Cl2 0.03646 (17) 0.02445 (16) 0.01645 (14) −0.00133 (13) 0.00162 (14) −0.00090 (14)

Geometric parameters (Å, °)

O1—C7 1.4155 (19) C11—C16 1.388 (2)
O1—H81 0.79 (2) C11—C12 1.4112 (19)
N1—C11 1.4296 (15) C12—C13 1.3995 (19)
N1—C21 1.4311 (17) C13—C14 1.377 (2)
N1—C3 1.4681 (16) C13—H13 0.9500
N2—C34 1.4947 (16) C14—C15 1.377 (2)
N2—C31 1.4955 (16) C14—H14 0.9500
N2—C5 1.5049 (16) C15—C16 1.393 (2)
N2—H72 0.82 (2) C15—H15 0.9500
N3—C33 1.4918 (16) C16—H16 0.9500
N3—C32 1.4950 (16) C21—C26 1.394 (2)
N3—C6 1.5069 (16) C21—C22 1.408 (2)
N3—H73 0.98 (3) C22—C23 1.400 (2)
C1—C2 1.336 (2) C23—C24 1.375 (3)
C1—C12 1.457 (2) C23—H23 0.9500
C1—H1 0.9500 C24—C25 1.379 (3)
C2—C22 1.460 (2) C24—H24 0.9500
C2—H2 0.9500 C25—C26 1.400 (2)
C3—C4 1.5256 (17) C25—H25 0.9500
C3—H3A 0.9900 C26—H26 0.9500
C3—H3B 0.9900 C31—C32 1.5183 (17)
C4—C5 1.5168 (18) C31—H31A 0.9900
C4—H4A 0.9900 C31—H31B 0.9900
C4—H4B 0.9900 C32—H32A 0.9900
C5—H5A 0.9900 C32—H32B 0.9900
C5—H5B 0.9900 C33—C34 1.5160 (17)
C6—C7 1.517 (2) C33—H33A 0.9900
C6—H6A 0.9900 C33—H33B 0.9900
C6—H6B 0.9900 C34—H34A 0.9900
C7—H7A 0.9900 C34—H34B 0.9900
C7—H7B 0.9900
C7—O1—H81 116.3 (18) C13—C12—C1 117.91 (13)
C11—N1—C21 118.62 (10) C11—C12—C1 124.22 (13)
C11—N1—C3 116.17 (10) C14—C13—C12 122.66 (14)
C21—N1—C3 116.65 (10) C14—C13—H13 118.7
C34—N2—C31 109.20 (10) C12—C13—H13 118.7
C34—N2—C5 110.86 (10) C15—C14—C13 118.80 (13)
C31—N2—C5 112.80 (10) C15—C14—H14 120.6
C34—N2—H72 105.4 (11) C13—C14—H14 120.6
C31—N2—H72 111.5 (11) C14—C15—C16 120.43 (15)
C5—N2—H72 106.8 (11) C14—C15—H15 119.8
C33—N3—C32 108.78 (10) C16—C15—H15 119.8
C33—N3—C6 114.68 (10) C11—C16—C15 120.82 (14)
C32—N3—C6 110.47 (10) C11—C16—H16 119.6
C33—N3—H73 106.9 (13) C15—C16—H16 119.6
C32—N3—H73 105.3 (13) C26—C21—C22 119.42 (13)
C6—N3—H73 110.3 (13) C26—C21—N1 120.63 (12)
C2—C1—C12 128.07 (14) C22—C21—N1 119.64 (13)
C2—C1—H1 116.0 C23—C22—C21 118.25 (14)
C12—C1—H1 116.0 C23—C22—C2 117.80 (14)
C1—C2—C22 127.67 (14) C21—C22—C2 123.94 (14)
C1—C2—H2 116.2 C24—C23—C22 122.13 (15)
C22—C2—H2 116.2 C24—C23—H23 118.9
N1—C3—C4 111.63 (11) C22—C23—H23 118.9
N1—C3—H3A 109.3 C23—C24—C25 119.48 (15)
C4—C3—H3A 109.3 C23—C24—H24 120.3
N1—C3—H3B 109.3 C25—C24—H24 120.3
C4—C3—H3B 109.3 C24—C25—C26 120.03 (16)
H3A—C3—H3B 108.0 C24—C25—H25 120.0
C5—C4—C3 109.60 (11) C26—C25—H25 120.0
C5—C4—H4A 109.8 C21—C26—C25 120.56 (16)
C3—C4—H4A 109.8 C21—C26—H26 119.7
C5—C4—H4B 109.8 C25—C26—H26 119.7
C3—C4—H4B 109.8 N2—C31—C32 111.00 (11)
H4A—C4—H4B 108.2 N2—C31—H31A 109.4
N2—C5—C4 112.22 (11) C32—C31—H31A 109.4
N2—C5—H5A 109.2 N2—C31—H31B 109.4
C4—C5—H5A 109.2 C32—C31—H31B 109.4
N2—C5—H5B 109.2 H31A—C31—H31B 108.0
C4—C5—H5B 109.2 N3—C32—C31 110.71 (11)
H5A—C5—H5B 107.9 N3—C32—H32A 109.5
N3—C6—C7 112.88 (12) C31—C32—H32A 109.5
N3—C6—H6A 109.0 N3—C32—H32B 109.5
C7—C6—H6A 109.0 C31—C32—H32B 109.5
N3—C6—H6B 109.0 H32A—C32—H32B 108.1
C7—C6—H6B 109.0 N3—C33—C34 110.76 (10)
H6A—C6—H6B 107.8 N3—C33—H33A 109.5
O1—C7—C6 109.62 (12) C34—C33—H33A 109.5
O1—C7—H7A 109.7 N3—C33—H33B 109.5
C6—C7—H7A 109.7 C34—C33—H33B 109.5
O1—C7—H7B 109.7 H33A—C33—H33B 108.1
C6—C7—H7B 109.7 N2—C34—C33 110.62 (10)
H7A—C7—H7B 108.2 N2—C34—H34A 109.5
C16—C11—C12 119.44 (12) C33—C34—H34A 109.5
C16—C11—N1 120.57 (12) N2—C34—H34B 109.5
C12—C11—N1 119.67 (12) C33—C34—H34B 109.5
C13—C12—C11 117.80 (13) H34A—C34—H34B 108.1
C12—C1—C2—C22 −1.6 (3) C11—N1—C21—C26 120.11 (14)
C11—N1—C3—C4 154.28 (12) C3—N1—C21—C26 −26.61 (18)
C21—N1—C3—C4 −58.17 (16) C11—N1—C21—C22 −66.34 (17)
N1—C3—C4—C5 −167.31 (11) C3—N1—C21—C22 146.94 (12)
C34—N2—C5—C4 −170.35 (11) C26—C21—C22—C23 2.8 (2)
C31—N2—C5—C4 66.82 (15) N1—C21—C22—C23 −170.80 (12)
C3—C4—C5—N2 −177.44 (11) C26—C21—C22—C2 −177.67 (13)
C33—N3—C6—C7 −60.37 (17) N1—C21—C22—C2 8.7 (2)
C32—N3—C6—C7 176.29 (12) C1—C2—C22—C23 −153.31 (16)
N3—C6—C7—O1 84.54 (16) C1—C2—C22—C21 27.2 (2)
C21—N1—C11—C16 −123.35 (14) C21—C22—C23—C24 0.3 (2)
C3—N1—C11—C16 23.53 (18) C2—C22—C23—C24 −179.21 (15)
C21—N1—C11—C12 63.22 (17) C22—C23—C24—C25 −2.6 (3)
C3—N1—C11—C12 −149.90 (12) C23—C24—C25—C26 1.7 (3)
C16—C11—C12—C13 −1.05 (19) C22—C21—C26—C25 −3.7 (2)
N1—C11—C12—C13 172.46 (13) N1—C21—C26—C25 169.85 (13)
C16—C11—C12—C1 −177.82 (14) C24—C25—C26—C21 1.4 (2)
N1—C11—C12—C1 −4.3 (2) C34—N2—C31—C32 57.10 (15)
C2—C1—C12—C13 155.85 (16) C5—N2—C31—C32 −179.15 (11)
C2—C1—C12—C11 −27.4 (2) C33—N3—C32—C31 58.15 (15)
C11—C12—C13—C14 −0.8 (2) C6—N3—C32—C31 −175.15 (12)
C1—C12—C13—C14 176.16 (14) N2—C31—C32—N3 −58.39 (15)
C12—C13—C14—C15 1.0 (2) C32—N3—C33—C34 −58.79 (15)
C13—C14—C15—C16 0.8 (2) C6—N3—C33—C34 176.97 (12)
C12—C11—C16—C15 2.8 (2) C31—N2—C34—C33 −57.48 (14)
N1—C11—C16—C15 −170.66 (13) C5—N2—C34—C33 177.64 (11)
C14—C15—C16—C11 −2.7 (2) N3—C33—C34—N2 59.46 (15)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C11–C16 ring.
D—H···A D—H H···A D···A D—H···A
O1—H81···Cl1i 0.79 (2) 2.39 (2) 3.1701 (14) 169 (2)
N2—H72···Cl1 0.82 (2) 2.212 (19) 3.0057 (13) 163.0 (15)
N3—H73···Cl2ii 0.98 (3) 2.03 (3) 2.9972 (12) 171 (2)
C5—H5A···Cl1iii 0.99 2.82 3.7065 (15) 149.
C5—H5A···O1ii 0.99 2.59 3.3373 (18) 133.
C14—H14···Cl1iv 0.95 2.83 3.7233 (14) 157.
C31—H31A···O1ii 0.99 2.54 3.2446 (18) 128.
C31—H31B···Cl2v 0.99 2.75 3.5518 (14) 139.
C32—H32B···Cl1ii 0.99 2.85 3.8246 (13) 169.
C32—H32A···Cl2vi 0.99 2.85 3.7213 (16) 148.
C6—H6B···Cl2vi 0.99 2.76 3.6634 (18) 152.
C34—H34A···Cl2 0.99 2.82 3.5471 (13) 131.
C16—H16···Cg2iv 0.95 2.98 3.6402 (16) 128
C23—H23···Cg2vii 0.95 2.67 3.4805 (18) 143

Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) −x+1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) −x, −y+1, z+1/2; (v) x, y+1, z; (vi) −x+1/2, y+1/2, z−1/2; (vii) −x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2030).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.
  3. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Fun, H.-K., Loh, W.-S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1598. [DOI] [PMC free article] [PubMed]
  9. Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1979–o1980. [DOI] [PMC free article] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Moller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59–65. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o2079–o2080. [DOI] [PMC free article] [PubMed]
  14. Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296. [DOI] [PMC free article] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042280/mw2030sup1.cif

e-67-o2994-sup1.cif (30.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811042280/mw2030Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042280/mw2030Isup3.hkl

e-67-o2994-Isup3.hkl (257.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042280/mw2030Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES