Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o2999. doi: 10.1107/S1600536811042462

3-[Chloro­(phen­yl)meth­yl]-6-methyl-1,2-benzoxazole

M Kayalvizhi a, G Vasuki a,*, K Ramamurthi b, A Veerareddy c, G Laxminarasimha c
PMCID: PMC3247399  PMID: 22220017

Abstract

The title compound, C15H12ClNO, is a functionalized 1,2-benzoxazole with a chloro­(phen­yl)methyl substituent. The mol­ecule is V-shaped, the dihedral angle between the mean plane of the 1,2-benzoxazole system [maximum deviation = 0.023 (3) Å for the N atom] and the phenyl ring being 70.33 (14)°. There are no hydrogen-bonding inter­actions in the crystal structure, which is stabilized by van der Waals inter­actions only.

Related literature

For the synthesis of the title compound, see: Veerareddy et al. (2011). For related structures, see: Atovmyan & Aliev (1994); Hu et al. (2009); Korlyukov et al. (2003).graphic file with name e-67-o2999-scheme1.jpg

Experimental

Crystal data

  • C15H12ClNO

  • M r = 257.71

  • Monoclinic, Inline graphic

  • a = 13.2075 (8) Å

  • b = 6.5888 (4) Å

  • c = 15.1224 (8) Å

  • β = 103.738 (3)°

  • V = 1278.33 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.919, T max = 0.945

  • 10507 measured reflections

  • 2087 independent reflections

  • 1621 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.125

  • S = 1.06

  • 2087 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042462/su2326sup1.cif

e-67-o2999-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042462/su2326Isup2.hkl

e-67-o2999-Isup2.hkl (100.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042462/su2326Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VG thanks the UGC, India, for financial assistance under the Minor Research Project (2010–2011) and also thanks the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the X-ray data collection.

supplementary crystallographic information

Comment

Benzisoxazole is an aromatic organic compound with a molecular formula C7H5NO containing a benzene-fused isoxazole ring structure. Benzisoxazole is primarily used in industry and research. Being a heterocyclic compound, benzisoxazole finds use in research as a starting material for the synthesis of larger, usually bioactive structures. Isoxazole and benzisoxazole are important classes of nitrogen-oxygen containing heterocycles. They have extensive applications as structural units of various biologically important molecules and as useful intermediates in medicinal chemistry. Among them, 3–substituted–1,2–benzisoxazole and their derivatives are emerging as potential antipsychotic compounds. For example, 1,2–benzisoxazole–3–methanesulfonamide, also known as zonisamide, is an efficient antiseizure agent. It has been reported that it blocks the repetitive firing of voltage–sensitive sodium channels and reduces voltage–sensitive T–type calcium currents (Veerareddy et al., 2011).

In molecular structure of the title functionalized 1,2-benzoxazole compound, (I), is illustrated in Fig. 1. The bond length and angles are in agreement with those found for closely related structures, for example, 6-tert-butyl-4,5-dichloro-3-ethyl-4,5-dihydro-2,1-benzoisoxazole (II) [Atovmyan & Aliev, 1994], 3-(1,3-dioxolan-2-yl)-4,6-dinitrobenzo[d]isoxazole (III) [Korlyukov et al., 2003], and N-Phenyl-4-(8-phenyl-4,5-dihydro-1,2-benzoxazolo- [4,5-d]thiazol-2-yl)-piperidine-1-carboxamide (IV) [Hu et al., 2009]. The widening of the exocyclic angle C10—C9—C3 [113.4 (2)°] from the normal value of 109° may be due to repulsion between neighbouring H atoms [H9··· H11 = 2.2495 (1) Å]. The exocyclic angles C9—C3—C3a [132.1 (2)°] and C3—C3a—C4 [138.2 (2)°] deviate significantly from the normal value of 120° and this may be due to the intramolecular non-bonded interactions between the chlorine atom and H-atom H4 at C10 [Cl··· H4 = 3.1169 (7) Å]. The isoxazole ring (O1,N2,C3,C3a,C7a) is planar [max. deviation 0.007 (3) Å], with the chloro(phenyl)methyl substituent being nearly normal to the plane of the five membered ring [N2-C3-C9-C10 = 100.1 (3)°], similar to the situation in compound (II) (Atovmyan & Aliev, 1994). The dihedral angle between the mean plane of the 1,2-benzoxazole [max. deviation 0.023 (3) Å] and the phenyl ring (C10-C15) is 70.33 (14)°.

Crystal packing of compound (I) is illustrated in Fig. 2. There are no significant non-bonded interactions present and the crystal structure is stabilized by van der Waals interactions only.

Experimental

The compound was synthesized following the published procedure (Veerareddy et al., 2011).

Refinement

All the H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93Å (aromatic), 0.98Å (methine) and 0.96Å (methyl), and refined using a riding model with Uiso(H )= 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I), showing the numbering sheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of compound (I).

Crystal data

C15H12ClNO F(000) = 536
Mr = 257.71 Dx = 1.339 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 13.2075 (8) Å θ = 20–30°
b = 6.5888 (4) Å µ = 0.29 mm1
c = 15.1224 (8) Å T = 293 K
β = 103.738 (3)° Block, colourless
V = 1278.33 (13) Å3 0.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2087 independent reflections
Radiation source: fine-focus sealed tube 1621 reflections with I > 2σ(I)
graphite Rint = 0.028
ω and φ scan θmax = 24.4°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −15→15
Tmin = 0.919, Tmax = 0.945 k = −5→7
10507 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.7285P] where P = (Fo2 + 2Fc2)/3
2087 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C14 0.3858 (2) 0.3538 (4) 0.10340 (19) 0.0625 (7)
H14 0.3663 0.4825 0.0803 0.075*
C15 0.33247 (19) 0.2630 (4) 0.16026 (17) 0.0514 (6)
H15 0.2771 0.3303 0.1756 0.062*
C10 0.36083 (17) 0.0718 (3) 0.19482 (15) 0.0426 (6)
C11 0.44364 (18) −0.0247 (4) 0.17192 (16) 0.0512 (6)
H11 0.4639 −0.1530 0.1953 0.061*
C12 0.4965 (2) 0.0676 (5) 0.11477 (18) 0.0614 (7)
H12 0.5521 0.0012 0.0995 0.074*
C13 0.4678 (2) 0.2562 (5) 0.08037 (18) 0.0637 (8)
H13 0.5035 0.3181 0.0416 0.076*
C9 0.30211 (18) −0.0408 (4) 0.25392 (16) 0.0499 (6)
H9 0.3434 −0.1605 0.2783 0.060*
C3 0.19728 (18) −0.1135 (3) 0.20317 (16) 0.0453 (6)
C3A 0.10029 (17) −0.0106 (3) 0.17045 (15) 0.0407 (5)
C4 0.05889 (18) 0.1827 (4) 0.17530 (16) 0.0474 (6)
H4 0.0998 0.2874 0.2060 0.057*
C5 −0.04334 (19) 0.2133 (4) 0.13360 (17) 0.0512 (6)
H5 −0.0716 0.3417 0.1366 0.061*
C6 −0.10804 (18) 0.0600 (4) 0.08627 (16) 0.0486 (6)
C7 −0.06762 (19) −0.1303 (4) 0.08068 (17) 0.0526 (6)
H7 −0.1082 −0.2348 0.0494 0.063*
C7A 0.03587 (19) −0.1596 (3) 0.12364 (17) 0.0476 (6)
C8 −0.2204 (2) 0.1048 (5) 0.0429 (2) 0.0708 (8)
H8A −0.2352 0.2441 0.0536 0.106*
H8B −0.2642 0.0181 0.0687 0.106*
H8C −0.2336 0.0809 −0.0215 0.106*
N2 0.19137 (18) −0.3037 (3) 0.17984 (18) 0.0657 (6)
O1 0.08903 (15) −0.3377 (3) 0.12767 (15) 0.0693 (6)
Cl 0.28938 (6) 0.11252 (13) 0.34931 (5) 0.0704 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C14 0.0699 (18) 0.0508 (17) 0.0611 (16) −0.0066 (14) 0.0044 (14) 0.0094 (13)
C15 0.0511 (14) 0.0432 (15) 0.0587 (15) 0.0055 (11) 0.0106 (11) 0.0002 (12)
C10 0.0392 (12) 0.0423 (14) 0.0416 (12) 0.0019 (10) 0.0006 (9) −0.0024 (10)
C11 0.0486 (14) 0.0475 (15) 0.0531 (14) 0.0081 (12) 0.0031 (11) −0.0021 (12)
C12 0.0488 (15) 0.079 (2) 0.0567 (16) 0.0005 (14) 0.0144 (12) −0.0122 (15)
C13 0.0619 (17) 0.078 (2) 0.0519 (15) −0.0193 (15) 0.0139 (13) 0.0000 (15)
C9 0.0551 (15) 0.0430 (14) 0.0513 (14) 0.0105 (11) 0.0120 (11) 0.0057 (11)
C3 0.0534 (14) 0.0350 (13) 0.0504 (13) 0.0023 (10) 0.0179 (11) 0.0070 (10)
C3A 0.0484 (13) 0.0326 (12) 0.0441 (12) −0.0027 (10) 0.0169 (10) 0.0027 (10)
C4 0.0526 (14) 0.0376 (14) 0.0511 (14) −0.0020 (11) 0.0103 (11) −0.0060 (11)
C5 0.0556 (15) 0.0424 (15) 0.0569 (14) 0.0056 (12) 0.0158 (12) −0.0026 (12)
C6 0.0458 (13) 0.0564 (17) 0.0450 (13) −0.0035 (12) 0.0137 (10) 0.0013 (11)
C7 0.0540 (15) 0.0498 (16) 0.0560 (15) −0.0153 (12) 0.0173 (12) −0.0054 (12)
C7A 0.0579 (15) 0.0313 (13) 0.0572 (14) −0.0044 (11) 0.0207 (12) 0.0029 (11)
C8 0.0540 (16) 0.080 (2) 0.0760 (19) −0.0010 (14) 0.0105 (14) −0.0066 (16)
N2 0.0642 (15) 0.0356 (13) 0.0970 (18) 0.0053 (10) 0.0186 (13) 0.0041 (12)
O1 0.0672 (12) 0.0324 (10) 0.1063 (16) −0.0036 (9) 0.0168 (11) −0.0070 (10)
Cl 0.0770 (5) 0.0849 (6) 0.0506 (4) −0.0038 (4) 0.0177 (3) −0.0093 (3)

Geometric parameters (Å, °)

C14—C15 1.371 (4) C3—C3A 1.430 (3)
C14—C13 1.374 (4) C3A—C7A 1.380 (3)
C14—H14 0.9300 C3A—C4 1.395 (3)
C15—C10 1.381 (3) C4—C5 1.363 (3)
C15—H15 0.9300 C4—H4 0.9300
C10—C11 1.378 (3) C5—C6 1.404 (4)
C10—C9 1.510 (3) C5—H5 0.9300
C11—C12 1.375 (4) C6—C7 1.374 (4)
C11—H11 0.9300 C6—C8 1.502 (4)
C12—C13 1.365 (4) C7—C7A 1.380 (3)
C12—H12 0.9300 C7—H7 0.9300
C13—H13 0.9300 C7A—O1 1.361 (3)
C9—C3 1.494 (3) C8—H8A 0.9600
C9—Cl 1.801 (2) C8—H8B 0.9600
C9—H9 0.9800 C8—H8C 0.9600
C3—N2 1.299 (3) N2—O1 1.412 (3)
C15—C14—C13 120.5 (3) C7A—C3A—C4 118.4 (2)
C15—C14—H14 119.7 C7A—C3A—C3 103.5 (2)
C13—C14—H14 119.7 C4—C3A—C3 138.2 (2)
C14—C15—C10 120.1 (2) C5—C4—C3A 118.0 (2)
C14—C15—H15 119.9 C5—C4—H4 121.0
C10—C15—H15 119.9 C3A—C4—H4 121.0
C11—C10—C15 119.1 (2) C4—C5—C6 123.0 (2)
C11—C10—C9 118.2 (2) C4—C5—H5 118.5
C15—C10—C9 122.7 (2) C6—C5—H5 118.5
C12—C11—C10 120.3 (3) C7—C6—C5 119.3 (2)
C12—C11—H11 119.8 C7—C6—C8 120.7 (2)
C10—C11—H11 119.8 C5—C6—C8 120.0 (2)
C13—C12—C11 120.4 (2) C6—C7—C7A 117.0 (2)
C13—C12—H12 119.8 C6—C7—H7 121.5
C11—C12—H12 119.8 C7A—C7—H7 121.5
C12—C13—C14 119.6 (3) O1—C7A—C3A 110.0 (2)
C12—C13—H13 120.2 O1—C7A—C7 125.8 (2)
C14—C13—H13 120.2 C3A—C7A—C7 124.3 (2)
C3—C9—C10 113.4 (2) C6—C8—H8A 109.5
C3—C9—Cl 109.88 (16) C6—C8—H8B 109.5
C10—C9—Cl 110.95 (17) H8A—C8—H8B 109.5
C3—C9—H9 107.5 C6—C8—H8C 109.5
C10—C9—H9 107.5 H8A—C8—H8C 109.5
Cl—C9—H9 107.5 H8B—C8—H8C 109.5
N2—C3—C3A 111.9 (2) C3—N2—O1 107.0 (2)
N2—C3—C9 116.0 (2) C7A—O1—N2 107.68 (18)
C3A—C3—C9 132.1 (2)
C13—C14—C15—C10 −0.1 (4) C9—C3—C3A—C4 −5.6 (5)
C14—C15—C10—C11 0.5 (4) C7A—C3A—C4—C5 0.2 (3)
C14—C15—C10—C9 −176.9 (2) C3—C3A—C4—C5 −178.3 (2)
C15—C10—C11—C12 −0.6 (3) C3A—C4—C5—C6 −0.1 (4)
C9—C10—C11—C12 176.9 (2) C4—C5—C6—C7 −0.3 (4)
C10—C11—C12—C13 0.3 (4) C4—C5—C6—C8 179.3 (2)
C11—C12—C13—C14 0.2 (4) C5—C6—C7—C7A 0.6 (3)
C15—C14—C13—C12 −0.3 (4) C8—C6—C7—C7A −179.0 (2)
C11—C10—C9—C3 −106.5 (2) C4—C3A—C7A—O1 −178.9 (2)
C15—C10—C9—C3 71.0 (3) C3—C3A—C7A—O1 0.1 (3)
C11—C10—C9—Cl 129.31 (19) C4—C3A—C7A—C7 0.2 (4)
C15—C10—C9—Cl −53.2 (3) C3—C3A—C7A—C7 179.1 (2)
C10—C9—C3—N2 100.1 (3) C6—C7—C7A—O1 178.3 (2)
Cl—C9—C3—N2 −135.1 (2) C6—C7—C7A—C3A −0.6 (4)
C10—C9—C3—C3A −76.4 (3) C3A—C3—N2—O1 1.3 (3)
Cl—C9—C3—C3A 48.4 (3) C9—C3—N2—O1 −175.9 (2)
N2—C3—C3A—C7A −0.9 (3) C3A—C7A—O1—N2 0.7 (3)
C9—C3—C3A—C7A 175.7 (2) C7—C7A—O1—N2 −178.4 (2)
N2—C3—C3A—C4 177.7 (3) C3—N2—O1—C7A −1.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2326).

References

  1. Atovmyan, I. L. & Aliev, Z. G. (1994). Russ. Chem. Bull. 43, 806–808.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hu, D.-J., Liu, M., Huang, T.-H., Tu, H.-Y. & Zhang, A. (2009). Acta Cryst. E65, o1593. [DOI] [PMC free article] [PubMed]
  6. Korlyukov, A. A., Starosotnikov, A. M., Lyssenko, K. A., Shevelev, S. A. & Antipin, M. Yu. (2003). Russ. Chem. Bull. 52, 2095–2099.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Veerareddy, A., Laxminarasimhulu, G., Uday, B. R. S. & Pramod, K. D. (2011). Indian J. Chem. Sect. B, 50, 119–125.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042462/su2326sup1.cif

e-67-o2999-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042462/su2326Isup2.hkl

e-67-o2999-Isup2.hkl (100.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042462/su2326Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES