Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o3000. doi: 10.1107/S1600536811041602

4-(Dodec­yloxy)benzonitrile

Huey Chong Kwong a, Mohamad Zaki Ab Rahman a, Mohamed Ibrahim Mohamed Tahir a, Sidik Silong a,*
PMCID: PMC3247400  PMID: 22220018

Abstract

In the title compound, C19H29NO, the C—C and C—N bond distances of the benzonitrile group are 1.445 (2) and 1.157 (2) Å, respectively. The aliphatic fragment adopts a bent zigzag arangement which differs from the planar zigzag arrangement normally observed in n-alkanes or long-chain alkyl­benzenes. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur. A C—H⋯N inter­action also occurs. In the crystal, mol­ecules are packed with the nitrile and aliphatic groups oriented in a head-to-tail fashion involving, forming a ripple-like motif along the a axis.

Related literature

For standard bond lengths, see Allen et al. (1987). For related structures, see: Merz (2002); Britton et al. (2004); Kwong et al. (2011); Boese et al. (1999). The title compound was synthesised by reacting hy­droxy­benzonitrile with bromo­alkane, see Rahman et al. (2009).graphic file with name e-67-o3000-scheme1.jpg

Experimental

Crystal data

  • C19H29NO

  • M r = 287.45

  • Monoclinic, Inline graphic

  • a = 5.7080 (6) Å

  • b = 7.3644 (8) Å

  • c = 40.642 (5) Å

  • β = 90°

  • V = 1708.4 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 100 K

  • 0.17 × 0.14 × 0.09 mm

Data collection

  • Oxford Diffraction Gemini E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) T min = 0.930, T max = 0.955

  • 9444 measured reflections

  • 3214 independent reflections

  • 2575 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.127

  • S = 0.98

  • 3202 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: Gemini (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041602/kp2353sup1.cif

e-67-o3000-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041602/kp2353Isup2.hkl

e-67-o3000-Isup2.hkl (201.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041602/kp2353Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H102⋯N7i 0.98 2.67 3.468 (2) 139
C3—H31⋯O1ii 0.94 2.67 3.569 (5) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for funding (Research Grant Nos. 04–01–04-SF0144 and 05–02–10–0934RU).

supplementary crystallographic information

Comment

The titled compound (I), 4-(dodecyloxy)benzonitrile (Fig. 1) was synthesised by reacting hydroxybenzonitrile with bromoalkane (Rahman et al., 2009). Bond distance and angles of (I) are in normal range (Allen et al. 1987). Bond distance of the benzonitrile group C5—C6 and C6—N7 are 1.445 (2) Å and 1.157 (2) Å, respectively and these bond lengths are comparable with those in p-decylbenzonitrile of 1.446 (3) Å and 1.153 (3) Å, respectively (Britton et al., 2004).

In this molecule, the plane formed by benzonitrile ring and O1 was almost planar, the largest deviation from the least-squares plane is 0.0187 (12) Å at O1. The benzene ring and the alkane carbon skeleton (C9—C2—O1—C10) form the torsion angle of 1.62 (2)°. In this structure the alkane carbon skeleton has a bended zigzag arrangement; this arrangement is in agreement with previously reported alkoxy benzenen [4-hexyloxybenzamide, Kwong et al., 2011] However, the mean C(H3)—C(H2) and C(H2)—C(H2) distances, and C(H3)—C(H2)—C and C(H2)—C(H2)—C angles, are in accordance of those determined for n-alkanes and long-chain alkylbenzene, 1.521 (1) Å and 112.8 (1)–113.5 (1)°, respectively. (Boese et al., 1999; Merz, 2002; Britton et al., 2004).

In the crystal packing, the centrosymmetric hydrogen bond C3—H31···O1 is formed generating a hydrogen bonded ring (Table 1 and Fig. 2). Packing of the titled compound shows a ripple-like motif (Fig. 2) with nitrile and aliphatic groups oriented head-to-tail. The stacking interaction between the aromatic rings with the separation distances of their centres of gravity Cg1···Cg1i (-x,1-y,1-z) of 3.573 (1) and Cg1···Cg1ii(-x,2-y,1-z) of 3.808 (1) Å and slipage of 1.395 and 1.865 Å, respectively, were observed.

Experimental

The titled compound (I) was synthesised by reacting hydroxybenzonitrile with bromoalkane with conventional heating (Rahman et al., 2009). Crystals of (I) were grown from hexane using a slow evaporation.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.90 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with atom numbering and displacement ellipsoids at 50% probability level.

Fig. 2.

Fig. 2.

The packing diagram of (I) showing a ripple-like motif viewing along a axis; hydrogen bonds were shown as dashed lines [b axis green; c axis blue].

Crystal data

C19H29NO F(000) = 632
Mr = 287.45 Dx = 1.117 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54180 Å
a = 5.7080 (6) Å Cell parameters from 3853 reflections
b = 7.3644 (8) Å θ = 3–71°
c = 40.642 (5) Å µ = 0.52 mm1
β = 90° T = 100 K
V = 1708.4 (3) Å3 Plate-like, colourless
Z = 4 0.17 × 0.14 × 0.09 mm

Data collection

Oxford Diffraction Gemini E diffractometer 3214 independent reflections
Radiation source: sealed x-ray tube 2575 reflections with I > 2σ(I)
graphite Rint = 0.020
ω/2θ scans θmax = 71.6°, θmin = 4.4°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) h = −6→6
Tmin = 0.930, Tmax = 0.955 k = −8→9
9444 measured reflections l = −37→49

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.127 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 1.35P], where P = [max(Fo2,0) + 2Fc2]/3
S = 0.98 (Δ/σ)max = 0.007
3202 reflections Δρmax = 0.24 e Å3
190 parameters Δρmin = −0.25 e Å3
0 restraints

Special details

Refinement. Refinement. For this compound, 9444 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 3214 reflection left. 12 more reflections were filtered, as σ cutoff was set as 3 and (sin?/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 3202.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.33735 (19) 0.61108 (16) 0.45325 (3) 0.0243
C2 0.1734 (3) 0.6793 (2) 0.47454 (4) 0.0214
C3 0.2277 (3) 0.6631 (2) 0.50786 (4) 0.0221
C4 0.0719 (3) 0.7247 (2) 0.53150 (4) 0.0228
C5 −0.1403 (3) 0.8033 (2) 0.52206 (4) 0.0219
C6 −0.3025 (3) 0.8685 (2) 0.54668 (4) 0.0234
N7 −0.4333 (3) 0.9209 (2) 0.56623 (4) 0.0295
C8 −0.1922 (3) 0.8209 (2) 0.48877 (4) 0.0221
C9 −0.0351 (3) 0.7606 (2) 0.46502 (4) 0.0220
C10 0.2944 (3) 0.6284 (2) 0.41859 (4) 0.0242
C11 0.5019 (3) 0.5506 (2) 0.40024 (4) 0.0252
C12 0.4902 (3) 0.5918 (2) 0.36351 (4) 0.0246
C13 0.6978 (3) 0.5162 (2) 0.34403 (4) 0.0257
C14 0.7033 (3) 0.5790 (2) 0.30831 (4) 0.0251
C15 0.9124 (3) 0.5066 (2) 0.28868 (4) 0.0258
C16 0.9230 (3) 0.5776 (2) 0.25349 (4) 0.0257
C17 1.1323 (3) 0.5068 (2) 0.23378 (4) 0.0257
C18 1.1450 (3) 0.5806 (2) 0.19882 (4) 0.0258
C19 1.3543 (3) 0.5106 (2) 0.17902 (4) 0.0259
C20 1.3684 (3) 0.5847 (3) 0.14407 (4) 0.0282
C21 1.5784 (3) 0.5133 (3) 0.12487 (4) 0.0322
H31 0.3704 0.6093 0.5144 0.0260*
H41 0.1098 0.7150 0.5546 0.0259*
H81 −0.3353 0.8725 0.4821 0.0251*
H91 −0.0710 0.7743 0.4422 0.0250*
H102 0.2751 0.7577 0.4131 0.0287*
H101 0.1498 0.5632 0.4128 0.0284*
H111 0.6426 0.6050 0.4091 0.0296*
H112 0.5060 0.4186 0.4040 0.0302*
H122 0.4875 0.7226 0.3605 0.0291*
H121 0.3473 0.5416 0.3544 0.0290*
H131 0.8392 0.5561 0.3546 0.0305*
H132 0.6919 0.3834 0.3445 0.0313*
H142 0.7085 0.7111 0.3080 0.0303*
H141 0.5615 0.5402 0.2974 0.0293*
H151 1.0537 0.5428 0.3000 0.0304*
H152 0.9037 0.3730 0.2881 0.0309*
H162 0.9305 0.7093 0.2541 0.0313*
H161 0.7809 0.5426 0.2420 0.0302*
H172 1.2745 0.5408 0.2450 0.0312*
H171 1.1235 0.3737 0.2328 0.0314*
H181 1.1543 0.7134 0.1998 0.0308*
H182 1.0027 0.5487 0.1872 0.0310*
H192 1.4972 0.5440 0.1907 0.0307*
H191 1.3442 0.3777 0.1780 0.0315*
H201 1.3788 0.7175 0.1451 0.0338*
H202 1.2254 0.5535 0.1326 0.0335*
H212 1.5813 0.5587 0.1021 0.0465*
H211 1.7246 0.5486 0.1352 0.0467*
H213 1.5746 0.3804 0.1239 0.0474*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0228 (6) 0.0292 (7) 0.0208 (6) 0.0029 (5) −0.0019 (5) −0.0005 (5)
C2 0.0216 (8) 0.0179 (8) 0.0247 (8) −0.0037 (7) −0.0010 (6) −0.0006 (7)
C3 0.0195 (8) 0.0198 (8) 0.0269 (9) −0.0008 (7) −0.0045 (6) 0.0010 (7)
C4 0.0238 (9) 0.0212 (9) 0.0235 (8) −0.0035 (7) −0.0044 (7) 0.0001 (7)
C5 0.0208 (8) 0.0199 (8) 0.0251 (8) −0.0043 (7) 0.0002 (6) 0.0002 (7)
C6 0.0224 (9) 0.0215 (8) 0.0261 (9) −0.0022 (7) −0.0055 (7) 0.0019 (7)
N7 0.0269 (8) 0.0338 (9) 0.0279 (8) 0.0001 (7) −0.0017 (6) −0.0015 (7)
C8 0.0173 (8) 0.0207 (9) 0.0283 (9) −0.0022 (6) −0.0044 (6) 0.0016 (7)
C9 0.0223 (8) 0.0211 (9) 0.0224 (8) −0.0037 (7) −0.0039 (6) 0.0016 (6)
C10 0.0231 (9) 0.0274 (9) 0.0221 (8) −0.0011 (7) −0.0031 (7) 0.0000 (7)
C11 0.0227 (9) 0.0283 (9) 0.0247 (9) 0.0004 (7) −0.0018 (7) −0.0009 (7)
C12 0.0226 (8) 0.0264 (9) 0.0249 (9) −0.0001 (7) −0.0024 (7) 0.0007 (7)
C13 0.0257 (9) 0.0274 (9) 0.0240 (9) 0.0034 (7) −0.0025 (7) −0.0012 (7)
C14 0.0228 (9) 0.0282 (9) 0.0244 (9) 0.0010 (7) −0.0026 (7) −0.0001 (7)
C15 0.0249 (9) 0.0277 (9) 0.0249 (9) 0.0026 (7) −0.0036 (7) −0.0016 (7)
C16 0.0251 (9) 0.0277 (9) 0.0242 (9) 0.0011 (7) −0.0032 (7) 0.0001 (7)
C17 0.0254 (9) 0.0283 (9) 0.0234 (9) 0.0010 (7) −0.0041 (7) −0.0013 (7)
C18 0.0239 (9) 0.0284 (9) 0.0251 (9) 0.0009 (7) −0.0034 (7) 0.0008 (7)
C19 0.0255 (9) 0.0281 (9) 0.0240 (9) 0.0003 (7) −0.0040 (7) −0.0016 (7)
C20 0.0270 (9) 0.0313 (10) 0.0264 (9) 0.0000 (8) −0.0026 (7) 0.0006 (7)
C21 0.0308 (10) 0.0387 (11) 0.0269 (9) −0.0008 (8) −0.0012 (8) −0.0007 (8)

Geometric parameters (Å, °)

O1—C2 1.3698 (19) C13—H132 0.979
O1—C10 1.4355 (19) C14—C15 1.531 (2)
C2—C3 1.394 (2) C14—H142 0.973
C2—C9 1.387 (2) C14—H141 0.966
C3—C4 1.385 (2) C15—C16 1.524 (2)
C3—H31 0.943 C15—H151 0.967
C4—C5 1.396 (2) C15—H152 0.985
C4—H41 0.965 C16—C17 1.530 (2)
C5—C6 1.445 (2) C16—H162 0.972
C5—C8 1.391 (2) C16—H161 0.970
C6—N7 1.157 (2) C17—C18 1.523 (2)
C8—C9 1.390 (2) C17—H172 0.963
C8—H81 0.941 C17—H171 0.982
C9—H91 0.954 C18—C19 1.530 (2)
C10—C11 1.512 (2) C18—H181 0.980
C10—H102 0.984 C18—H182 0.968
C10—H101 0.984 C19—C20 1.524 (2)
C11—C12 1.525 (2) C19—H192 0.976
C11—H111 0.967 C19—H191 0.981
C11—H112 0.984 C20—C21 1.524 (2)
C12—C13 1.530 (2) C20—H201 0.981
C12—H122 0.971 C20—H202 0.967
C12—H121 0.969 C21—H212 0.985
C13—C14 1.524 (2) C21—H211 0.969
C13—H131 0.961 C21—H213 0.980
C2—O1—C10 118.08 (12) C15—C14—H142 108.6
O1—C2—C3 115.50 (14) C13—C14—H141 109.3
O1—C2—C9 124.62 (14) C15—C14—H141 108.1
C3—C2—C9 119.89 (15) H142—C14—H141 108.4
C2—C3—C4 120.20 (15) C14—C15—C16 113.61 (14)
C2—C3—H31 120.0 C14—C15—H151 107.8
C4—C3—H31 119.8 C16—C15—H151 108.7
C3—C4—C5 120.14 (15) C14—C15—H152 108.7
C3—C4—H41 120.4 C16—C15—H152 108.8
C5—C4—H41 119.4 H151—C15—H152 109.2
C4—C5—C6 120.23 (15) C15—C16—C17 113.93 (14)
C4—C5—C8 119.37 (15) C15—C16—H162 108.6
C6—C5—C8 120.40 (15) C17—C16—H162 108.6
C5—C6—N7 179.56 (17) C15—C16—H161 109.0
C5—C8—C9 120.54 (15) C17—C16—H161 108.1
C5—C8—H81 120.1 H162—C16—H161 108.3
C9—C8—H81 119.4 C16—C17—C18 113.81 (14)
C8—C9—C2 119.85 (15) C16—C17—H172 108.8
C8—C9—H91 120.1 C18—C17—H172 107.9
C2—C9—H91 120.0 C16—C17—H171 108.7
O1—C10—C11 108.46 (13) C18—C17—H171 108.8
O1—C10—H102 109.2 H172—C17—H171 108.7
C11—C10—H102 110.0 C17—C18—C19 114.02 (14)
O1—C10—H101 109.5 C17—C18—H181 108.6
C11—C10—H101 110.8 C19—C18—H181 108.4
H102—C10—H101 108.9 C17—C18—H182 109.1
C10—C11—C12 111.90 (14) C19—C18—H182 108.5
C10—C11—H111 108.0 H181—C18—H182 108.0
C12—C11—H111 108.6 C18—C19—C20 114.25 (14)
C10—C11—H112 108.4 C18—C19—H192 108.1
C12—C11—H112 110.4 C20—C19—H192 108.7
H111—C11—H112 109.4 C18—C19—H191 108.2
C11—C12—C13 113.60 (14) C20—C19—H191 108.8
C11—C12—H122 108.7 H192—C19—H191 108.7
C13—C12—H122 108.0 C19—C20—C21 113.30 (15)
C11—C12—H121 109.5 C19—C20—H201 108.7
C13—C12—H121 108.5 C21—C20—H201 108.5
H122—C12—H121 108.5 C19—C20—H202 108.7
C12—C13—C14 113.50 (14) C21—C20—H202 109.5
C12—C13—H131 107.9 H201—C20—H202 108.0
C14—C13—H131 108.5 C20—C21—H212 112.2
C12—C13—H132 109.1 C20—C21—H211 111.4
C14—C13—H132 108.8 H212—C21—H211 107.5
H131—C13—H132 109.0 C20—C21—H213 110.4
C13—C14—C15 114.01 (14) H212—C21—H213 107.5
C13—C14—H142 108.3 H211—C21—H213 107.7

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H102···N7i 0.98 2.67 3.468 (2) 139.
C3—H31···O1ii 0.94 2.67 3.569 (5) 159.

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2353).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Boese, R., Weiss, H.-C. & Blaeser, D. (1999). Angew. Chem. Int. Ed. 38, 988–992. [DOI] [PubMed]
  5. Britton, D., Sowa, J. R. & Mann, K. R. (2004). Acta Cryst. C60, o418–o420. [DOI] [PubMed]
  6. Kwong, H. C., Rahman, M. Z. A., Mohamed Tahir, M. I. & Silong, S. (2011). Acta Cryst. E67, o612. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Merz, K. (2002). Acta Cryst. E58, o450–o451.
  9. Oxford Diffraction (2006). CrysAlis PRO, CrysAlis RED and Gemini Oxford Diffraction Ltd, Abingdon, England.
  10. Rahman, M. Z. A., Salisu, A. A., Silong, S., Luffor, M. R. & Ayub, M. B. A. (2009). Asian J. Appl. Sci. 2, 177–183.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041602/kp2353sup1.cif

e-67-o3000-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041602/kp2353Isup2.hkl

e-67-o3000-Isup2.hkl (201.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041602/kp2353Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES