Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o3002. doi: 10.1107/S1600536811042553

N′-(5-Bromo-2-hy­droxy­benzyl­idene)-3-nitro­benzohydrazide methanol mono­solvate

Chun-Bao Tang a,*
PMCID: PMC3247402  PMID: 22220020

Abstract

In the title compound, C14H10BrN3O4·CH4O, the dihedral angle between the two benzene rings in the hydrazone mol­ecule is 5.8 (3)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. An O—H⋯O hydrogen bond occurs between the hydrazone mol­ecule and the methanol solvent mol­ecule. In the crystal, the components are linked by inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For reference bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3002-scheme1.jpg

Experimental

Crystal data

  • C14H10BrN3O4·CH4O

  • M r = 396.20

  • Triclinic, Inline graphic

  • a = 6.701 (2) Å

  • b = 9.492 (3) Å

  • c = 13.011 (3) Å

  • α = 105.866 (2)°

  • β = 92.535 (2)°

  • γ = 94.496 (2)°

  • V = 791.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 298 K

  • 0.13 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.726, T max = 0.779

  • 6325 measured reflections

  • 3356 independent reflections

  • 1142 reflections with I > 2σ(I)

  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.236

  • S = 0.93

  • 3356 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042553/qm2037sup1.cif

e-67-o3002-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042553/qm2037Isup2.hkl

e-67-o3002-Isup2.hkl (164.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042553/qm2037Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5i 0.90 (1) 2.04 (5) 2.854 (10) 150 (9)
O5—H5⋯O2 0.82 1.90 2.701 (10) 166
O1—H1⋯N1 0.82 1.99 2.700 (10) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Jiaying University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the title new hydrazone compound (Fig. 1).

The compound contains a hydrazone molecule and a methanol molecule of crystallization. The dihedral angle between the two benzene rings in the hydrazone molecule is 5.8 (3)°. An intramolecular O—H···N hydrogen bond generates a S(6) ring motif in the hydrazone molecule (Bernstein et al., 1995). Bond lengths in the compound are normal (Allen et al., 1987) and comparable to those in the similar compounds the author has reported previously (Tang, 2010; Tang, 2011). In the crystal structure, the hydrazone molecules are linked by the methanol molecules through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Experimental

5-Bromo-2-hydroxybenzaldehyde (0.1 mmol, 20.1 mg) and 3-nitrobenzohydrazide (0.1 mmol, 18.1 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow needle-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement

The amino H atom was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and hydrogen bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

Molecular packing of the title compound, with hydrogen bonds shown as dashed lines.

Crystal data

C14H10BrN3O4·CH4O Z = 2
Mr = 396.20 F(000) = 400
Triclinic, P1 Dx = 1.662 Mg m3
a = 6.701 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.492 (3) Å Cell parameters from 850 reflections
c = 13.011 (3) Å θ = 2.6–24.3°
α = 105.866 (2)° µ = 2.63 mm1
β = 92.535 (2)° T = 298 K
γ = 94.496 (2)° Cut from needle, yellow
V = 791.7 (4) Å3 0.13 × 0.12 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3356 independent reflections
Radiation source: fine-focus sealed tube 1142 reflections with I > 2σ(I)
graphite Rint = 0.109
ω scans θmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.726, Tmax = 0.779 k = −12→11
6325 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236 H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0975P)2] where P = (Fo2 + 2Fc2)/3
3356 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.56 e Å3
1 restraint Δρmin = −0.83 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.86686 (17) −0.35734 (12) −0.00940 (10) 0.0719 (6)
N1 0.6581 (10) 0.3028 (8) 0.2164 (6) 0.048 (2)
N2 0.7644 (11) 0.4381 (8) 0.2533 (7) 0.053 (2)
N3 0.6919 (17) 1.0932 (11) 0.4149 (7) 0.065 (3)
O1 0.3298 (9) 0.1075 (7) 0.1801 (6) 0.065 (2)
H1 0.3900 0.1899 0.2010 0.097*
O2 0.4839 (9) 0.5566 (7) 0.2601 (7) 0.075 (2)
O3 0.5095 (13) 1.0768 (8) 0.4134 (7) 0.083 (3)
O4 0.7862 (12) 1.2078 (9) 0.4478 (7) 0.095 (3)
O5 0.1684 (10) 0.3998 (8) 0.3110 (8) 0.080 (2)
H5 0.2535 0.4451 0.2858 0.119*
C1 0.6692 (13) 0.0452 (9) 0.1409 (7) 0.040 (2)
C2 0.4602 (13) 0.0083 (10) 0.1402 (7) 0.045 (3)
C3 0.3811 (13) −0.1355 (10) 0.0995 (8) 0.052 (3)
H3 0.2446 −0.1599 0.1019 0.062*
C4 0.5030 (15) −0.2441 (10) 0.0548 (8) 0.058 (3)
H4 0.4491 −0.3409 0.0255 0.069*
C5 0.7013 (14) −0.2068 (10) 0.0547 (8) 0.051 (3)
C6 0.7845 (13) −0.0647 (10) 0.0954 (7) 0.045 (3)
H6 0.9214 −0.0428 0.0920 0.054*
C7 0.7583 (13) 0.1925 (10) 0.1837 (8) 0.049 (3)
H7 0.8975 0.2089 0.1880 0.058*
C8 0.6684 (15) 0.5605 (10) 0.2710 (8) 0.050 (3)
C9 0.7917 (13) 0.7039 (10) 0.3036 (8) 0.047 (3)
C10 0.6934 (13) 0.8259 (11) 0.3455 (7) 0.048 (3)
H10 0.5569 0.8164 0.3553 0.058*
C11 0.7981 (15) 0.9610 (10) 0.3723 (8) 0.050 (3)
C12 1.0014 (16) 0.9800 (12) 0.3593 (8) 0.061 (3)
H12 1.0697 1.0735 0.3782 0.073*
C13 1.0973 (15) 0.8607 (13) 0.3191 (9) 0.069 (3)
H13 1.2341 0.8716 0.3102 0.082*
C14 0.9956 (14) 0.7203 (12) 0.2903 (8) 0.060 (3)
H14 1.0640 0.6382 0.2623 0.071*
C15 0.2258 (18) 0.4128 (14) 0.4176 (12) 0.100 (5)
H15A 0.2783 0.5124 0.4524 0.149*
H15B 0.3272 0.3478 0.4208 0.149*
H15C 0.1116 0.3873 0.4530 0.149*
H2 0.893 (5) 0.462 (11) 0.280 (8) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0633 (8) 0.0472 (7) 0.0991 (11) 0.0263 (5) 0.0049 (6) 0.0041 (6)
N1 0.037 (5) 0.039 (5) 0.066 (6) 0.010 (4) −0.003 (4) 0.010 (4)
N2 0.037 (5) 0.034 (5) 0.079 (6) 0.006 (4) −0.003 (4) −0.001 (4)
N3 0.078 (7) 0.050 (6) 0.065 (7) 0.014 (6) −0.008 (6) 0.011 (5)
O1 0.046 (4) 0.040 (4) 0.105 (6) 0.014 (3) 0.000 (4) 0.011 (4)
O2 0.027 (4) 0.058 (5) 0.138 (7) 0.009 (3) −0.002 (4) 0.027 (5)
O3 0.072 (6) 0.063 (5) 0.116 (7) 0.032 (4) 0.010 (5) 0.018 (5)
O4 0.089 (6) 0.045 (5) 0.133 (8) 0.013 (5) −0.015 (5) −0.003 (5)
O5 0.041 (5) 0.057 (5) 0.135 (8) 0.006 (4) −0.005 (5) 0.019 (5)
C1 0.033 (5) 0.035 (6) 0.053 (7) 0.006 (4) 0.000 (5) 0.013 (5)
C2 0.038 (6) 0.041 (6) 0.061 (7) 0.019 (5) 0.014 (5) 0.019 (5)
C3 0.034 (5) 0.037 (6) 0.080 (8) 0.003 (5) 0.001 (5) 0.009 (5)
C4 0.060 (7) 0.024 (5) 0.085 (9) 0.004 (5) −0.008 (6) 0.009 (5)
C5 0.040 (6) 0.039 (6) 0.068 (8) 0.006 (5) −0.003 (5) 0.005 (5)
C6 0.030 (5) 0.041 (6) 0.061 (7) 0.006 (4) 0.002 (5) 0.009 (5)
C7 0.033 (5) 0.052 (7) 0.064 (7) 0.012 (5) −0.001 (5) 0.020 (6)
C8 0.045 (7) 0.042 (6) 0.065 (8) 0.016 (5) 0.003 (5) 0.014 (5)
C9 0.034 (6) 0.044 (6) 0.064 (7) 0.015 (5) 0.000 (5) 0.017 (5)
C10 0.034 (5) 0.059 (7) 0.055 (7) 0.018 (5) 0.002 (5) 0.017 (5)
C11 0.056 (7) 0.036 (6) 0.051 (7) 0.004 (5) −0.004 (5) 0.002 (5)
C12 0.058 (8) 0.057 (7) 0.063 (8) −0.002 (6) −0.011 (6) 0.016 (6)
C13 0.039 (6) 0.072 (8) 0.088 (9) 0.011 (6) −0.005 (6) 0.011 (7)
C14 0.035 (6) 0.064 (8) 0.069 (8) 0.006 (5) −0.002 (5) 0.001 (6)
C15 0.087 (10) 0.090 (10) 0.109 (12) 0.017 (8) −0.023 (9) 0.008 (9)

Geometric parameters (Å, °)

Br1—C5 1.910 (9) C4—C5 1.348 (12)
N1—C7 1.273 (10) C4—H4 0.9300
N1—N2 1.370 (10) C5—C6 1.370 (11)
N2—C8 1.342 (11) C6—H6 0.9300
N2—H2 0.901 (10) C7—H7 0.9300
N3—O4 1.175 (10) C8—C9 1.481 (13)
N3—O3 1.219 (10) C9—C10 1.370 (12)
N3—C11 1.477 (12) C9—C14 1.387 (12)
O1—C2 1.349 (9) C10—C11 1.360 (12)
O1—H1 0.8200 C10—H10 0.9300
O2—C8 1.235 (10) C11—C12 1.384 (13)
O5—C15 1.392 (13) C12—C13 1.338 (13)
O5—H5 0.8200 C12—H12 0.9300
C1—C6 1.366 (11) C13—C14 1.393 (13)
C1—C2 1.416 (12) C13—H13 0.9300
C1—C7 1.427 (12) C14—H14 0.9300
C2—C3 1.375 (12) C15—H15A 0.9600
C3—C4 1.383 (12) C15—H15B 0.9600
C3—H3 0.9300 C15—H15C 0.9600
C7—N1—N2 117.1 (8) C1—C7—H7 118.2
C8—N2—N1 119.9 (8) O2—C8—N2 122.4 (9)
C8—N2—H2 109 (7) O2—C8—C9 119.9 (8)
N1—N2—H2 130 (7) N2—C8—C9 117.7 (8)
O4—N3—O3 123.5 (10) C10—C9—C14 119.5 (9)
O4—N3—C11 118.9 (10) C10—C9—C8 116.8 (8)
O3—N3—C11 117.6 (9) C14—C9—C8 123.7 (9)
C2—O1—H1 109.5 C11—C10—C9 119.1 (9)
C15—O5—H5 109.5 C11—C10—H10 120.4
C6—C1—C2 117.8 (8) C9—C10—H10 120.4
C6—C1—C7 120.2 (8) C10—C11—C12 122.3 (9)
C2—C1—C7 122.0 (8) C10—C11—N3 119.4 (9)
O1—C2—C3 116.6 (8) C12—C11—N3 118.3 (9)
O1—C2—C1 123.4 (8) C13—C12—C11 118.4 (10)
C3—C2—C1 120.0 (8) C13—C12—H12 120.8
C2—C3—C4 120.5 (9) C11—C12—H12 120.8
C2—C3—H3 119.7 C12—C13—C14 121.1 (10)
C4—C3—H3 119.7 C12—C13—H13 119.5
C5—C4—C3 118.7 (9) C14—C13—H13 119.5
C5—C4—H4 120.6 C9—C14—C13 119.5 (10)
C3—C4—H4 120.6 C9—C14—H14 120.2
C4—C5—C6 122.0 (9) C13—C14—H14 120.2
C4—C5—Br1 118.2 (7) O5—C15—H15A 109.5
C6—C5—Br1 119.7 (7) O5—C15—H15B 109.5
C1—C6—C5 120.9 (8) H15A—C15—H15B 109.5
C1—C6—H6 119.6 O5—C15—H15C 109.5
C5—C6—H6 119.6 H15A—C15—H15C 109.5
N1—C7—C1 123.7 (8) H15B—C15—H15C 109.5
N1—C7—H7 118.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O5i 0.90 (1) 2.04 (5) 2.854 (10) 150 (9)
O5—H5···O2 0.82 1.90 2.701 (10) 166.
O1—H1···N1 0.82 1.99 2.700 (10) 144.

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2037).

References

  1. Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062. [DOI] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. [DOI] [PMC free article] [PubMed]
  7. Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.
  8. Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. [DOI] [PMC free article] [PubMed]
  12. Tang, C.-B. (2010). Acta Cryst. E66, o2482. [DOI] [PMC free article] [PubMed]
  13. Tang, C.-B. (2011). Acta Cryst. E67, o271. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042553/qm2037sup1.cif

e-67-o3002-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042553/qm2037Isup2.hkl

e-67-o3002-Isup2.hkl (164.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042553/qm2037Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES