Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o3009. doi: 10.1107/S1600536811042899

Ethyl (Z)-2-(2-fluoro­benzyl­idene)-7-methyl-3-oxo-5-phenyl-3,5-dihydro-2H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

Cheng-Guang Zhao a,b, Jie Hu b, Ya-Li Zhang a, Jing Zhang a, Shu-Lin Yang a,*
PMCID: PMC3247408  PMID: 22220026

Abstract

The title compound, C23H19FN2O3S, a fused-pyrimidine derivative, displays dihedral angles between the thia­zole ring and the benzene ring and substituted benzene ring of 7.10 (14) and 3.48 (12)°, respectively. The dihydro­pyrimidine ring adopts a flattened boat conformation. The olefinic double bond is in a Z configuration.

Related literature

For related crystal structures, see: Hou (2009); Kulakov et al. (2009). For background to the biological properties of fused-pyrimidine derivatives, see: Alam et al. (2010); Al-Rashood & Abdel-Aziz (2010); Ashok et al. (2007); Jang et al. (2011); Wichmann et al. (1999);. Zhou et al. (2011).graphic file with name e-67-o3009-scheme1.jpg

Experimental

Crystal data

  • C23H19FN2O3S

  • M r = 422.46

  • Monoclinic, Inline graphic

  • a = 9.3230 (19) Å

  • b = 10.170 (2) Å

  • c = 21.862 (4) Å

  • β = 96.33 (3)°

  • V = 2060.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.26 × 0.17 × 0.13 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.831, T max = 1.000

  • 10963 measured reflections

  • 4040 independent reflections

  • 2918 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.147

  • S = 1.04

  • 4040 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042899/ng5248sup1.cif

e-67-o3009-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042899/ng5248Isup2.hkl

e-67-o3009-Isup2.hkl (198KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042899/ng5248Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y4110197) and the Project of Wenzhou Science and Technology Bureau (grant No. Y20100273). The X-ray crystallographic facility at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences is gratefully acknowledged.

supplementary crystallographic information

Comment

Pyrimidine derivatives are important molecules owing to their useful biological and therapeutic activities (Ashok et al., 2007; Zhou et al., 2011). Thiazole derivatives have similar useful activity (Jang et al., 2011). Such structural units are found in a vast number of naturally-occurring compounds and pharmaceuticals, so that the presence of both pyrimidine and thiazole rings give rise to enhanced activity (Al-Rashood & Abdel-Aziz, 2010; Wichmann et al., 1999; Alam et al., 2010).

In continuation of our studies on heterocyclic compounds, we report the crystal structure of (I). The fused thiazole ring has usual geometry as observed in other fused thiazolopyrimidine compounds (Hou, 2009; Kulakov et al., 2009). The thiazole ring makes dihedral angles of 87.10 (14) and 3.48 (12) ° with the benzene rings C14–C17 and C8–C13, respectively. The pyrimidine ring adopts a flattened boat conformation. The C2—C7 double bond exist in the Z configuration. The crystal packing is stabilized by π-π stacking interactions. (Fig. 1).

Experimental

In a one-pot Biginelli reaction, a mixture of 5 mmol of benzaldehyde, 6 mmol e thyl acetoacetate, 7.5 mmol thiourea and 10 ml of EtOH was stirred at 50°C in presence of sulfamic acid catalyst for 3 h to obtain 6-methyl-4-phenyl-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate. The product (2 mmol) was reacted with ethyl chloroacetate (2 mmol) in presence of pyridine for 4 h; 2-fluorobenzaldehyde (2 mmol) and piperidine were added, and and the mixture refluxed for 4 h until the TLC assay indicated that the reaction was completed. The reaction mixture was cooled and filtered to give the crude product. The solid was recystallized from acetic acid, and single crystals were grown in a CH2Cl2/CH3OH mixture (5:2 v/v)..

Refinement

The H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined as riding with Uĩso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C23H19FN2O3S F(000) = 880
Mr = 422.46 Dx = 1.362 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.3230 (19) Å Cell parameters from 2127 reflections
b = 10.170 (2) Å θ = 2.5–24.0°
c = 21.862 (4) Å µ = 0.19 mm1
β = 96.33 (3)° T = 293 K
V = 2060.3 (7) Å3 Prismatic, green
Z = 4 0.26 × 0.17 × 0.13 mm

Data collection

Bruker SMART diffractometer 4040 independent reflections
Radiation source: fine-focus sealed tube 2918 reflections with I > 2σ(I)
graphite Rint = 0.027
ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −11→11
Tmin = 0.831, Tmax = 1.000 k = −11→12
10963 measured reflections l = −21→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.4206P] where P = (Fo2 + 2Fc2)/3
4040 reflections (Δ/σ)max = 0.009
273 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.12550 (6) 0.33812 (6) 1.02831 (3) 0.0515 (2)
N1 0.00474 (18) 0.31076 (17) 0.91699 (8) 0.0421 (4)
N2 −0.0764 (2) 0.16406 (19) 0.98954 (9) 0.0551 (5)
F1 0.46561 (19) 0.74388 (17) 0.96836 (8) 0.0873 (5)
O1 0.10315 (17) 0.47535 (17) 0.86461 (7) 0.0571 (4)
O2 −0.3636 (2) 0.0068 (2) 0.83596 (11) 0.0977 (7)
O3 −0.28690 (19) 0.1748 (2) 0.78413 (9) 0.0721 (5)
C1 0.0939 (2) 0.4181 (2) 0.91203 (10) 0.0423 (5)
C2 0.1745 (2) 0.4481 (2) 0.97289 (9) 0.0431 (5)
C3 0.0027 (2) 0.2577 (2) 0.97443 (10) 0.0455 (5)
C4 −0.0700 (2) 0.2454 (2) 0.86253 (10) 0.0476 (5)
H4 −0.1203 0.3121 0.8358 0.057*
C5 −0.1807 (2) 0.1507 (2) 0.88343 (11) 0.0499 (6)
C6 −0.1772 (2) 0.1125 (2) 0.94227 (12) 0.0536 (6)
C7 0.2703 (2) 0.5462 (2) 0.97837 (10) 0.0475 (5)
H7 0.2781 0.5930 0.9424 0.057*
C8 0.3638 (2) 0.5912 (2) 1.03149 (11) 0.0496 (6)
C9 0.3658 (3) 0.5407 (3) 1.09065 (12) 0.0632 (7)
H9 0.3031 0.4727 1.0979 0.076*
C10 0.4586 (3) 0.5889 (3) 1.13895 (13) 0.0768 (9)
H10 0.4578 0.5534 1.1781 0.092*
C11 0.5515 (3) 0.6883 (3) 1.12944 (16) 0.0795 (9)
H11 0.6140 0.7202 1.1622 0.095*
C12 0.5536 (3) 0.7414 (3) 1.07228 (15) 0.0747 (8)
H12 0.6164 0.8096 1.0657 0.090*
C13 0.4611 (3) 0.6919 (3) 1.02485 (13) 0.0588 (6)
C14 0.0385 (3) 0.1753 (3) 0.82699 (11) 0.0574 (7)
C15 0.0600 (3) 0.2140 (3) 0.76873 (13) 0.0809 (9)
H15 0.0088 0.2847 0.7504 0.097*
C16 0.1604 (5) 0.1456 (5) 0.73671 (18) 0.1075 (14)
H16 0.1754 0.1707 0.6970 0.129*
C17 0.2346 (4) 0.0434 (5) 0.7641 (2) 0.1163 (17)
H17 0.3004 −0.0013 0.7428 0.140*
C18 0.2155 (3) 0.0046 (4) 0.8219 (2) 0.1027 (13)
H18 0.2684 −0.0653 0.8402 0.123*
C19 0.1160 (3) 0.0704 (3) 0.85343 (15) 0.0768 (9)
H19 0.1014 0.0434 0.8929 0.092*
C20 −0.2869 (3) 0.1001 (3) 0.83382 (14) 0.0605 (7)
C21 −0.3860 (3) 0.1400 (4) 0.73092 (15) 0.0931 (11)
H21A −0.3472 0.0674 0.7092 0.112*
H21B −0.4777 0.1128 0.7439 0.112*
C22 −0.4067 (5) 0.2525 (5) 0.69102 (16) 0.1257 (15)
H22A −0.4401 0.3254 0.7135 0.189*
H22B −0.4769 0.2320 0.6569 0.189*
H22C −0.3169 0.2751 0.6761 0.189*
C23 −0.2756 (3) 0.0149 (3) 0.96687 (15) 0.0743 (8)
H23A −0.3639 0.0100 0.9399 0.111*
H23B −0.2961 0.0418 1.0071 0.111*
H23C −0.2300 −0.0699 0.9695 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0556 (4) 0.0553 (4) 0.0424 (3) 0.0045 (3) −0.0004 (3) 0.0014 (3)
N1 0.0425 (10) 0.0440 (10) 0.0396 (9) 0.0018 (8) 0.0034 (7) −0.0048 (8)
N2 0.0538 (12) 0.0497 (12) 0.0619 (13) 0.0032 (10) 0.0064 (10) 0.0065 (10)
F1 0.0901 (12) 0.0884 (12) 0.0848 (12) −0.0292 (10) 0.0158 (9) −0.0101 (9)
O1 0.0642 (10) 0.0621 (10) 0.0435 (9) −0.0110 (8) −0.0008 (7) 0.0053 (8)
O2 0.0845 (15) 0.0827 (15) 0.1215 (19) −0.0357 (12) −0.0082 (13) −0.0088 (13)
O3 0.0576 (11) 0.0893 (14) 0.0668 (12) −0.0195 (10) −0.0052 (9) −0.0159 (10)
C1 0.0424 (12) 0.0417 (12) 0.0423 (12) 0.0036 (9) 0.0027 (9) −0.0044 (10)
C2 0.0434 (12) 0.0439 (12) 0.0413 (12) 0.0118 (10) 0.0023 (9) −0.0061 (9)
C3 0.0439 (12) 0.0443 (12) 0.0487 (13) 0.0104 (10) 0.0063 (10) 0.0013 (10)
C4 0.0418 (12) 0.0527 (13) 0.0473 (12) −0.0001 (10) 0.0004 (10) −0.0083 (10)
C5 0.0360 (12) 0.0456 (12) 0.0684 (16) 0.0033 (10) 0.0076 (11) −0.0087 (11)
C6 0.0433 (13) 0.0409 (12) 0.0772 (18) 0.0069 (10) 0.0091 (12) 0.0008 (12)
C7 0.0472 (12) 0.0469 (12) 0.0475 (12) 0.0075 (10) 0.0009 (10) −0.0060 (10)
C8 0.0432 (12) 0.0501 (13) 0.0542 (14) 0.0116 (10) −0.0009 (10) −0.0119 (11)
C9 0.0656 (16) 0.0600 (16) 0.0605 (16) 0.0053 (13) −0.0085 (12) −0.0130 (12)
C10 0.081 (2) 0.082 (2) 0.0614 (17) 0.0164 (17) −0.0211 (15) −0.0173 (15)
C11 0.0549 (17) 0.088 (2) 0.090 (2) 0.0123 (16) −0.0197 (15) −0.0418 (18)
C12 0.0486 (15) 0.0779 (19) 0.095 (2) 0.0000 (14) −0.0020 (15) −0.0379 (17)
C13 0.0459 (13) 0.0580 (15) 0.0719 (17) 0.0036 (12) 0.0041 (12) −0.0179 (13)
C14 0.0435 (13) 0.0694 (16) 0.0598 (15) −0.0153 (12) 0.0084 (11) −0.0282 (13)
C15 0.080 (2) 0.098 (2) 0.0684 (18) −0.0322 (17) 0.0249 (15) −0.0315 (16)
C16 0.106 (3) 0.132 (3) 0.094 (3) −0.059 (3) 0.053 (2) −0.055 (3)
C17 0.075 (2) 0.128 (4) 0.155 (4) −0.037 (2) 0.056 (3) −0.087 (3)
C18 0.0606 (19) 0.109 (3) 0.140 (3) 0.0046 (18) 0.020 (2) −0.057 (3)
C19 0.0515 (15) 0.085 (2) 0.094 (2) 0.0080 (15) 0.0098 (14) −0.0357 (17)
C20 0.0411 (13) 0.0565 (15) 0.0834 (19) −0.0013 (12) 0.0050 (12) −0.0158 (14)
C21 0.071 (2) 0.121 (3) 0.081 (2) −0.0205 (19) −0.0181 (17) −0.026 (2)
C22 0.160 (4) 0.138 (4) 0.069 (2) −0.015 (3) −0.030 (2) −0.018 (2)
C23 0.0620 (17) 0.0546 (16) 0.107 (2) −0.0019 (13) 0.0147 (15) 0.0184 (15)

Geometric parameters (Å, °)

S1—C2 1.746 (2) C10—C11 1.361 (4)
S1—C3 1.752 (2) C10—H10 0.9300
N1—C3 1.369 (3) C11—C12 1.364 (4)
N1—C1 1.384 (3) C11—H11 0.9300
N1—C4 1.470 (3) C12—C13 1.369 (4)
N2—C3 1.270 (3) C12—H12 0.9300
N2—C6 1.418 (3) C14—C15 1.368 (4)
F1—C13 1.348 (3) C14—C19 1.379 (4)
O1—C1 1.201 (3) C15—C16 1.413 (5)
O2—C20 1.192 (3) C15—H15 0.9300
O3—C20 1.326 (3) C16—C17 1.351 (6)
O3—C21 1.448 (3) C16—H16 0.9300
C1—C2 1.486 (3) C17—C18 1.353 (6)
C2—C7 1.336 (3) C17—H17 0.9300
C4—C5 1.518 (3) C18—C19 1.387 (4)
C4—C14 1.520 (3) C18—H18 0.9300
C4—H4 0.9800 C19—H19 0.9300
C5—C6 1.341 (3) C21—C22 1.438 (5)
C5—C20 1.478 (3) C21—H21A 0.9700
C6—C23 1.492 (3) C21—H21B 0.9700
C7—C8 1.447 (3) C22—H22A 0.9600
C7—H7 0.9300 C22—H22B 0.9600
C8—C13 1.387 (4) C22—H22C 0.9600
C8—C9 1.390 (4) C23—H23A 0.9600
C9—C10 1.379 (4) C23—H23B 0.9600
C9—H9 0.9300 C23—H23C 0.9600
C2—S1—C3 91.96 (11) C13—C12—H12 120.8
C3—N1—C1 116.89 (18) F1—C13—C12 118.0 (3)
C3—N1—C4 120.74 (18) F1—C13—C8 118.2 (2)
C1—N1—C4 121.90 (18) C12—C13—C8 123.8 (3)
C3—N2—C6 116.4 (2) C15—C14—C19 119.3 (3)
C20—O3—C21 117.4 (2) C15—C14—C4 121.0 (3)
O1—C1—N1 123.46 (19) C19—C14—C4 119.7 (2)
O1—C1—C2 126.6 (2) C14—C15—C16 119.5 (4)
N1—C1—C2 109.93 (19) C14—C15—H15 120.2
C7—C2—C1 120.1 (2) C16—C15—H15 120.2
C7—C2—S1 129.77 (17) C17—C16—C15 119.6 (4)
C1—C2—S1 110.16 (16) C17—C16—H16 120.2
N2—C3—N1 127.0 (2) C15—C16—H16 120.2
N2—C3—S1 122.04 (18) C16—C17—C18 121.7 (4)
N1—C3—S1 111.00 (16) C16—C17—H17 119.2
N1—C4—C5 108.68 (18) C18—C17—H17 119.2
N1—C4—C14 110.08 (17) C17—C18—C19 119.1 (4)
C5—C4—C14 111.69 (19) C17—C18—H18 120.4
N1—C4—H4 108.8 C19—C18—H18 120.4
C5—C4—H4 108.8 C14—C19—C18 120.9 (4)
C14—C4—H4 108.8 C14—C19—H19 119.6
C6—C5—C20 123.1 (2) C18—C19—H19 119.6
C6—C5—C4 121.8 (2) O2—C20—O3 122.9 (3)
C20—C5—C4 115.0 (2) O2—C20—C5 127.2 (3)
C5—C6—N2 122.4 (2) O3—C20—C5 109.9 (2)
C5—C6—C23 126.0 (2) C22—C21—O3 108.9 (3)
N2—C6—C23 111.6 (2) C22—C21—H21A 109.9
C2—C7—C8 130.2 (2) O3—C21—H21A 109.9
C2—C7—H7 114.9 C22—C21—H21B 109.9
C8—C7—H7 114.9 O3—C21—H21B 109.9
C13—C8—C9 115.4 (2) H21A—C21—H21B 108.3
C13—C8—C7 119.5 (2) C21—C22—H22A 109.5
C9—C8—C7 125.1 (2) C21—C22—H22B 109.5
C10—C9—C8 121.6 (3) H22A—C22—H22B 109.5
C10—C9—H9 119.2 C21—C22—H22C 109.5
C8—C9—H9 119.2 H22A—C22—H22C 109.5
C11—C10—C9 120.2 (3) H22B—C22—H22C 109.5
C11—C10—H10 119.9 C6—C23—H23A 109.5
C9—C10—H10 119.9 C6—C23—H23B 109.5
C10—C11—C12 120.5 (3) H23A—C23—H23B 109.5
C10—C11—H11 119.7 C6—C23—H23C 109.5
C12—C11—H11 119.7 H23A—C23—H23C 109.5
C11—C12—C13 118.5 (3) H23B—C23—H23C 109.5
C11—C12—H12 120.8
C3—N1—C1—O1 −178.3 (2) S1—C2—C7—C8 0.6 (4)
C4—N1—C1—O1 9.5 (3) C2—C7—C8—C13 176.4 (2)
C3—N1—C1—C2 2.4 (2) C2—C7—C8—C9 −3.3 (4)
C4—N1—C1—C2 −169.82 (17) C13—C8—C9—C10 0.2 (4)
O1—C1—C2—C7 −1.2 (3) C7—C8—C9—C10 179.9 (2)
N1—C1—C2—C7 178.14 (18) C8—C9—C10—C11 −0.1 (4)
O1—C1—C2—S1 −179.97 (19) C9—C10—C11—C12 0.2 (4)
N1—C1—C2—S1 −0.6 (2) C10—C11—C12—C13 −0.4 (4)
C3—S1—C2—C7 −179.4 (2) C11—C12—C13—F1 −179.1 (2)
C3—S1—C2—C1 −0.79 (16) C11—C12—C13—C8 0.6 (4)
C6—N2—C3—N1 −2.6 (3) C9—C8—C13—F1 179.2 (2)
C6—N2—C3—S1 176.41 (16) C7—C8—C13—F1 −0.5 (3)
C1—N1—C3—N2 176.1 (2) C9—C8—C13—C12 −0.5 (4)
C4—N1—C3—N2 −11.6 (3) C7—C8—C13—C12 179.8 (2)
C1—N1—C3—S1 −3.0 (2) N1—C4—C14—C15 −115.2 (2)
C4—N1—C3—S1 169.30 (15) C5—C4—C14—C15 124.0 (2)
C2—S1—C3—N2 −177.05 (19) N1—C4—C14—C19 65.4 (3)
C2—S1—C3—N1 2.07 (16) C5—C4—C14—C19 −55.4 (3)
C3—N1—C4—C5 19.3 (3) C19—C14—C15—C16 0.2 (4)
C1—N1—C4—C5 −168.82 (18) C4—C14—C15—C16 −179.2 (2)
C3—N1—C4—C14 −103.3 (2) C14—C15—C16—C17 −0.4 (5)
C1—N1—C4—C14 68.6 (3) C15—C16—C17—C18 −0.1 (6)
N1—C4—C5—C6 −16.0 (3) C16—C17—C18—C19 0.8 (5)
C14—C4—C5—C6 105.6 (2) C15—C14—C19—C18 0.4 (4)
N1—C4—C5—C20 166.70 (18) C4—C14—C19—C18 179.8 (2)
C14—C4—C5—C20 −71.7 (2) C17—C18—C19—C14 −0.9 (5)
C20—C5—C6—N2 −178.7 (2) C21—O3—C20—O2 0.4 (4)
C4—C5—C6—N2 4.3 (3) C21—O3—C20—C5 −179.5 (2)
C20—C5—C6—C23 0.5 (4) C6—C5—C20—O2 −13.9 (4)
C4—C5—C6—C23 −176.5 (2) C4—C5—C20—O2 163.4 (3)
C3—N2—C6—C5 6.2 (3) C6—C5—C20—O3 166.0 (2)
C3—N2—C6—C23 −173.1 (2) C4—C5—C20—O3 −16.8 (3)
C1—C2—C7—C8 −177.9 (2) C20—O3—C21—C22 160.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17···O1i 0.93 2.62 3.410 (5) 144.
C23—H23C···S1ii 0.96 2.90 3.851 (3) 173.

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5248).

References

  1. Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245–1258.
  2. Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775–3815. [DOI] [PMC free article] [PubMed]
  3. Ashok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380–385. [DOI] [PubMed]
  4. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Hou, Z.-H. (2009). Acta Cryst. E65, o235. [DOI] [PMC free article] [PubMed]
  6. Jang, M. Y., Lin, Y., De Jonghe, S., Gao, L. J., Vanderhoydonck, B., Froeyen, M., Rozenski, J., Herman, J., Louat, T., Van Belle, K., Waer, M. & Herdewijn, P. (2011). J. Med. Chem. 54, 655–668. [DOI] [PubMed]
  7. Kulakov, I., Nurkenov, O., Turdybekov, D., Issabaeva, G., Mahmutova, A. & Turdybekov, K. (2009). Chem. Heterocycl. Compd, 45, 856–859.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wichmann, J., Adam, G., Kolczewski, S., Mutel, V. & Woltering, T. (1999). Bioorg. Med. Chem. Lett. 9, 1573–1576. [DOI] [PubMed]
  10. Zhou, B., Li, X., Li, Y., Xu, Y., Zhang, Z., Zhou, M., Zhang, X., Liu, Z., Zhou, J., Cao, C., Yu, B. & Wang, R. (2011). ChemMedChem, 6, 904–921. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042899/ng5248sup1.cif

e-67-o3009-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042899/ng5248Isup2.hkl

e-67-o3009-Isup2.hkl (198KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042899/ng5248Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES