Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o3011. doi: 10.1107/S1600536811042140

Benzyl (E)-3-(4-meth­oxy­benzyl­idene)dithio­carbazate

Zheng Fan a, Yan-Lan Huang b, Zhao Wang b, Han-Qi Guo b, Shang Shan b,*
PMCID: PMC3247410  PMID: 22220028

Abstract

The title compound, C16H16N2OS2, was obtained from a condensation reaction of benzyl dithio­carbazate and 4-meth­oxy­benzaldehyde. In the mol­ecule, the meth­oxy­phenyl ring and dithio­carbazate fragment are located on opposite sides of the C=N double bond, showing an E configuration. The dithio­carbazate fragment is approximately planar (r.m.s. deviation = 0.0052 Å); its mean plane is oriented at dihedral angles of 8.19 (15) and 85.70 (13)°, respectively, to the meth­oxy­phenyl and phenyl rings. Inter­molecular N—H⋯S hydrogen bonds and weak C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Shan et al. (2008a ,b ). For the synthesis, see: Hu et al. (2001).graphic file with name e-67-o3011-scheme1.jpg

Experimental

Crystal data

  • C16H16N2OS2

  • M r = 316.43

  • Monoclinic, Inline graphic

  • a = 10.267 (5) Å

  • b = 5.150 (2) Å

  • c = 31.686 (11) Å

  • β = 97.141 (5)°

  • V = 1662.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 294 K

  • 0.32 × 0.25 × 0.23 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.84, T max = 0.92

  • 6025 measured reflections

  • 2982 independent reflections

  • 1869 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.129

  • S = 1.04

  • 2982 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042140/xu5352sup1.cif

e-67-o3011-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042140/xu5352Isup2.hkl

e-67-o3011-Isup2.hkl (143.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042140/xu5352Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.59 3.397 (4) 158
C16—H16CCgii 0.96 2.83 3.671 (5) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

supplementary crystallographic information

Comment

Hydrazone and its derivatives have shown the potential application in the biological field (Okabe et al., 1993; Hu et al., 2001). As part of the ongoing investigation on anti-cancer compounds, the title compound has recently been prepared in our laboratory and its crystal structure is presented here.

In the molecules, the methoxylphenyl ring and dithiocarbazate fragment are located on the opposite sides of the C═N double bond, showing the E-configuration. The dithiocarbazate fragment is approximately planar [r.m.s deviation 0.0052 Å]; the mean plane of dithiocarbazate is oriented with respect to the methoxylphenyl and phenyl rings at 8.19 (15) and 85.70 (13)°, similar to those found in related structures (Shan et al. 2008a,b). Intermolecular N—H···S hydrogen bonding and weak C—H···π interaction are observed in the crystal structure (Table 1).

Experimental

Benzyl dithiocarbazate was synthesized as described previously (Hu et al., 2001). Benzyl dithiocarbazate (0.40 g, 2 mmol) and 4-methoxybenzaldehyde (0.27 g, 2 mmol) were dissolved in ethanol (20 ml), then acetic acid (0.2 ml) was added to the ethanol solution with stirring. The mixture solution was refluxed for 6 h. After cooling to room temperature, microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with absolute methanol to obtain colourless single crystals of the title compound.

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms).

Crystal data

C16H16N2OS2 F(000) = 664
Mr = 316.43 Dx = 1.264 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2982 reflections
a = 10.267 (5) Å θ = 3.4–25.2°
b = 5.150 (2) Å µ = 0.32 mm1
c = 31.686 (11) Å T = 294 K
β = 97.141 (5)° Block, colorless
V = 1662.4 (12) Å3 0.32 × 0.25 × 0.23 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer 2982 independent reflections
Radiation source: fine-focus sealed tube 1869 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 10.0 pixels mm-1 θmax = 25.2°, θmin = 3.5°
ω scans h = −12→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −5→6
Tmin = 0.84, Tmax = 0.92 l = −31→37
6025 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2] where P = (Fo2 + 2Fc2)/3
2982 reflections (Δ/σ)max = 0.001
191 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.65124 (8) 0.64526 (18) 0.54959 (2) 0.0628 (3)
S2 0.57408 (9) 0.40404 (17) 0.63003 (2) 0.0631 (3)
O1 −0.0078 (2) −0.7274 (5) 0.62062 (8) 0.0810 (7)
N1 0.4039 (2) 0.1129 (5) 0.57509 (7) 0.0545 (7)
N2 0.4768 (2) 0.2797 (5) 0.55381 (7) 0.0552 (7)
H2 0.4665 0.2815 0.5265 0.066*
C1 0.2443 (3) −0.2240 (6) 0.56941 (8) 0.0491 (7)
C2 0.1678 (3) −0.3916 (6) 0.54309 (9) 0.0582 (9)
H2A 0.1740 −0.3887 0.5141 0.070*
C3 0.0825 (3) −0.5632 (6) 0.55848 (10) 0.0608 (8)
H3 0.0315 −0.6738 0.5400 0.073*
C4 0.0734 (3) −0.5699 (6) 0.60140 (10) 0.0572 (8)
C5 0.1509 (3) −0.4053 (7) 0.62824 (10) 0.0663 (9)
H5 0.1456 −0.4105 0.6573 0.080*
C6 0.2355 (3) −0.2346 (6) 0.61278 (9) 0.0596 (9)
H6 0.2871 −0.1255 0.6313 0.072*
C7 0.3302 (3) −0.0417 (6) 0.55184 (9) 0.0553 (8)
H7 0.3314 −0.0376 0.5226 0.066*
C8 0.5635 (3) 0.4391 (6) 0.57512 (8) 0.0498 (8)
C9 0.6968 (4) 0.6468 (7) 0.64781 (9) 0.0725 (10)
H9A 0.7778 0.6104 0.6361 0.087*
H9B 0.6662 0.8177 0.6383 0.087*
C10 0.7200 (5) 0.6388 (8) 0.69529 (11) 0.0815 (12)
C11 0.8198 (6) 0.4920 (11) 0.71552 (14) 0.1309 (19)
H11 0.8712 0.3939 0.6993 0.157*
C12 0.8464 (8) 0.4854 (16) 0.7592 (2) 0.189 (4)
H12 0.9153 0.3870 0.7727 0.226*
C13 0.7687 (13) 0.6270 (17) 0.7815 (2) 0.199 (5)
H13 0.7830 0.6173 0.8110 0.239*
C14 0.6712 (12) 0.7826 (15) 0.7635 (2) 0.212 (5)
H14 0.6231 0.8854 0.7801 0.255*
C15 0.6444 (7) 0.7838 (11) 0.71840 (14) 0.138 (2)
H15 0.5758 0.8830 0.7049 0.166*
C16 −0.0915 (4) −0.8990 (7) 0.59433 (13) 0.0942 (13)
H16A −0.1487 −0.7997 0.5741 0.141*
H16B −0.1431 −0.9991 0.6117 0.141*
H16C −0.0392 −1.0135 0.5795 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0604 (6) 0.0731 (6) 0.0556 (5) −0.0213 (5) 0.0101 (4) 0.0138 (4)
S2 0.0699 (6) 0.0685 (6) 0.0511 (4) −0.0216 (5) 0.0086 (4) 0.0112 (4)
O1 0.0753 (19) 0.0729 (16) 0.0980 (16) −0.0258 (14) 0.0229 (14) 0.0156 (14)
N1 0.0472 (16) 0.0563 (16) 0.0604 (14) −0.0115 (14) 0.0078 (12) 0.0121 (13)
N2 0.0510 (17) 0.0639 (17) 0.0514 (13) −0.0149 (14) 0.0087 (12) 0.0088 (13)
C1 0.0451 (19) 0.0492 (18) 0.0530 (17) −0.0071 (15) 0.0060 (14) 0.0066 (14)
C2 0.056 (2) 0.067 (2) 0.0508 (16) −0.0112 (18) 0.0042 (14) 0.0004 (16)
C3 0.053 (2) 0.058 (2) 0.069 (2) −0.0126 (17) −0.0002 (15) −0.0007 (17)
C4 0.050 (2) 0.0486 (19) 0.074 (2) −0.0096 (16) 0.0093 (16) 0.0115 (17)
C5 0.074 (2) 0.073 (2) 0.0528 (17) −0.016 (2) 0.0123 (16) 0.0100 (17)
C6 0.063 (2) 0.060 (2) 0.0542 (18) −0.0183 (18) 0.0026 (15) −0.0033 (16)
C7 0.0455 (19) 0.064 (2) 0.0565 (17) −0.0062 (17) 0.0073 (14) 0.0112 (16)
C8 0.0430 (18) 0.0526 (19) 0.0544 (16) −0.0034 (15) 0.0088 (14) 0.0089 (15)
C9 0.088 (3) 0.071 (2) 0.0579 (18) −0.030 (2) 0.0062 (17) 0.0061 (17)
C10 0.120 (4) 0.066 (2) 0.057 (2) −0.034 (2) 0.006 (2) 0.004 (2)
C11 0.157 (5) 0.132 (4) 0.094 (3) −0.011 (4) −0.023 (3) 0.025 (3)
C12 0.271 (10) 0.173 (7) 0.099 (4) −0.046 (7) −0.069 (5) 0.040 (5)
C13 0.408 (15) 0.124 (7) 0.064 (4) −0.114 (8) 0.031 (6) −0.006 (4)
C14 0.433 (16) 0.110 (6) 0.105 (5) −0.051 (7) 0.080 (7) −0.021 (4)
C15 0.228 (7) 0.119 (4) 0.073 (3) −0.013 (4) 0.040 (4) −0.005 (3)
C16 0.072 (3) 0.067 (3) 0.145 (3) −0.028 (2) 0.019 (2) 0.016 (3)

Geometric parameters (Å, °)

S1—C8 1.665 (3) C6—H6 0.9300
S2—C8 1.739 (3) C7—H7 0.9300
S2—C9 1.814 (3) C9—C10 1.494 (4)
O1—C4 1.360 (4) C9—H9A 0.9700
O1—C16 1.427 (4) C9—H9B 0.9700
N1—C7 1.269 (4) C10—C15 1.356 (6)
N1—N2 1.371 (3) C10—C11 1.367 (6)
N2—C8 1.331 (3) C11—C12 1.376 (7)
N2—H2 0.8600 C11—H11 0.9300
C1—C2 1.376 (4) C12—C13 1.345 (11)
C1—C6 1.390 (4) C12—H12 0.9300
C1—C7 1.446 (4) C13—C14 1.352 (13)
C2—C3 1.376 (4) C13—H13 0.9300
C2—H2A 0.9300 C14—C15 1.423 (8)
C3—C4 1.375 (4) C14—H14 0.9300
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.381 (4) C16—H16A 0.9600
C5—C6 1.368 (4) C16—H16B 0.9600
C5—H5 0.9300 C16—H16C 0.9600
C8—S2—C9 101.16 (14) C10—C9—S2 108.1 (2)
C4—O1—C16 117.8 (3) C10—C9—H9A 110.1
C7—N1—N2 115.5 (2) S2—C9—H9A 110.1
C8—N2—N1 120.6 (2) C10—C9—H9B 110.1
C8—N2—H2 119.7 S2—C9—H9B 110.1
N1—N2—H2 119.7 H9A—C9—H9B 108.4
C2—C1—C6 118.2 (3) C15—C10—C11 119.8 (4)
C2—C1—C7 120.2 (3) C15—C10—C9 119.9 (4)
C6—C1—C7 121.6 (3) C11—C10—C9 120.2 (4)
C3—C2—C1 121.9 (3) C10—C11—C12 121.9 (6)
C3—C2—H2A 119.0 C10—C11—H11 119.1
C1—C2—H2A 119.0 C12—C11—H11 119.1
C4—C3—C2 119.4 (3) C13—C12—C11 117.3 (8)
C4—C3—H3 120.3 C13—C12—H12 121.3
C2—C3—H3 120.3 C11—C12—H12 121.3
O1—C4—C3 125.3 (3) C12—C13—C14 123.8 (7)
O1—C4—C5 115.4 (3) C12—C13—H13 118.1
C3—C4—C5 119.2 (3) C14—C13—H13 118.1
C6—C5—C4 121.1 (3) C13—C14—C15 117.8 (8)
C6—C5—H5 119.4 C13—C14—H14 121.1
C4—C5—H5 119.4 C15—C14—H14 121.1
C5—C6—C1 120.1 (3) C10—C15—C14 119.2 (7)
C5—C6—H6 119.9 C10—C15—H15 120.4
C1—C6—H6 119.9 C14—C15—H15 120.4
N1—C7—C1 122.2 (3) O1—C16—H16A 109.5
N1—C7—H7 118.9 O1—C16—H16B 109.5
C1—C7—H7 118.9 H16A—C16—H16B 109.5
N2—C8—S1 121.0 (2) O1—C16—H16C 109.5
N2—C8—S2 113.5 (2) H16A—C16—H16C 109.5
S1—C8—S2 125.59 (18) H16B—C16—H16C 109.5

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.
D—H···A D—H H···A D···A D—H···A
N2—H2···S1i 0.86 2.59 3.397 (4) 158
C16—H16C···Cgii 0.96 2.83 3.671 (5) 147

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5352).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.
  6. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014. [DOI] [PMC free article] [PubMed]
  10. Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042140/xu5352sup1.cif

e-67-o3011-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042140/xu5352Isup2.hkl

e-67-o3011-Isup2.hkl (143.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042140/xu5352Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES