Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o3012. doi: 10.1107/S1600536811042589

4-Chloro-6,7-dimeth­oxy­quinoline

Min Wu a,*
PMCID: PMC3247411  PMID: 22220029

Abstract

The title mol­ecule, C11H10ClNO2, is almost planar with the C atoms of the meth­oxy groups deviating by −0.082 (2) and 0.020 (2) Å from the least-squares plane defined by the atoms of the quinoline ring system (r.m.s. deviation = 0.002 Å). An intra­molecular C—H⋯Cl inter­action generates an S(5) ring motif.

Related literature

For related structures, see: Davies & Bond (2001); Yathirajan et al. (2007). For biological properties of quinoline derivatives, see: Franck et al. (2004); Moret et al. (2006); Furuta et al. (2006); Ilovich et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3012-scheme1.jpg

Experimental

Crystal data

  • C11H10ClNO2

  • M r = 223.65

  • Monoclinic, Inline graphic

  • a = 12.5530 (17) Å

  • b = 4.6499 (7) Å

  • c = 18.274 (3) Å

  • β = 105.786 (2)°

  • V = 1026.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Rigaku SCXmini diffractometer

  • 6840 measured reflections

  • 1808 independent reflections

  • 1542 reflections with I > 2σ(I)

  • R int = 0.034

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.115

  • S = 1.08

  • 1808 reflections

  • 139 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042589/lr2029sup1.cif

e-67-o3012-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042589/lr2029Isup3.hkl

e-67-o3012-Isup3.hkl (89KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042589/lr2029Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1 0.93 2.70 3.0827 (17) 105

Acknowledgments

We gratefully acknowledge financial support by the Natural Science Foundation of Jiangsu Province (BK2009293) and the Educational Commission of Jiangsu Province (JHB 2011–2).

supplementary crystallographic information

Comment

Quinoline derivatives have been interesting to researchers for many years because a large number of natural products contain these heterocycles and also because their varied biological activities ( Franck et al. 2004; Moret et al. 2006; Furuta et al. 2006 & Ilovich et al. 2008).

Prompted by the properties of quinoline derivatives, the title compound, C11H10ClNO2, has been synthesized. Bond lengths and angles are in the usual range (Davies & Bond 2001 & Yathirajan et al. 2007) and the whole molecule is almost planar with the carbon atoms of the methoxyl groups deviating 0.08 (C10) and 0.02Å (C11) from the least-square plane defined by the atoms of the quinoline ring. There are intramolecular C8 — H8 ···Cl1 interactions (Table 1) generating S(5) ring motifs (Bernstein et al. 1995) . Figure 1 shows the molecular structure of the title compound and Figure 2 is a partial paking view of the crystal structure down the b axis.

Experimental

A mixture of 6,7- dimethoxynaphthalen-1-ol (20.4 g, 100 mmol) and POCl3 (60 ml, 640 mmol) was heated under reflux for 6 h. The excess of phosporus oxychoride was distilled out under reduced pressure. 200 g crush ice was added to the residue followed by 50% aqueous NaOH until the pH was adjusted to 8. The resulting solid was collected by filtration and washed with water to give the crude product. Purification of the crude product by a column chromatography (petroleum ether: EtOAc = 8:1 v.v) afforded the title compound (15.6 g, 70%) as pink crystals.The purity of the product, 4- chloro- 6, 7- dimethoxy- quinoline, was determined using a reversed- phase C-18 analytical HPLC column (99% purity). Crystals of the title compound suitable for X– ray diffraction were obtained by slow evaporation of methanol solution at room temperature. m. p. 403- 404 K; 1H NMR (DMSO– d6): δ8.57 (d, J = 5.1 Hz, 1H), 7.40 (d, J = 4.8 Hz, 1H), 7.37 (s, 1H), 7.32 (s, 1H), 4.04 (s, 3H), 4.03 (s. 3H). MS (ESI, m/z): 224 (M+1).

Refinement

All H atoms were placed at calculated positions; C—H = 0.93 Å for aromatic H, C—H = 0.96 Å for methoxyl H. They were refined using a riding model with Uiso(H) = 1.2 Ueq (C) and Uiso(H) =1.5 Ueq (C), respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Partial packing view of the title compound, viewed down the b axis.

Crystal data

C11H10ClNO2 F(000) = 464
Mr = 223.65 Dx = 1.447 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.5530 (17) Å Cell parameters from 30 reflections
b = 4.6499 (7) Å θ = 3–25°
c = 18.274 (3) Å µ = 0.35 mm1
β = 105.786 (2)° T = 296 K
V = 1026.4 (3) Å3 Block, pink
Z = 4 0.3 × 0.2 × 0.2 mm

Data collection

Rigaku SCXmini diffractometer Rint = 0.034
Radiation source: fine-focus sealed tube θmax = 25.0°, θmin = 1.7°
graphite h = −14→14
ω scans k = −5→5
6840 measured reflections l = −21→21
1808 independent reflections 3 standard reflections every 150 reflections
1542 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.1562P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1808 reflections Δρmax = 0.29 e Å3
139 parameters Δρmin = −0.22 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.029 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.18445 (16) 0.9064 (4) 0.34245 (10) 0.0508 (5)
C2 0.23248 (18) 0.7745 (5) 0.40978 (11) 0.0608 (5)
H2 0.2071 0.8077 0.4523 0.073*
C3 0.32020 (19) 0.5895 (5) 0.41333 (12) 0.0668 (6)
H3 0.3522 0.4999 0.4596 0.080*
C4 0.31375 (16) 0.6656 (4) 0.28823 (10) 0.0486 (5)
C5 0.35750 (15) 0.6077 (4) 0.22615 (11) 0.0503 (5)
H5 0.4173 0.4832 0.2326 0.060*
C6 0.31298 (14) 0.7325 (4) 0.15691 (10) 0.0469 (4)
C7 0.22217 (14) 0.9277 (4) 0.14727 (9) 0.0443 (4)
C8 0.17947 (14) 0.9890 (4) 0.20641 (9) 0.0441 (4)
H8 0.1208 1.1173 0.1997 0.053*
C9 0.22416 (14) 0.8581 (3) 0.27829 (9) 0.0437 (4)
C10 0.43422 (17) 0.4878 (5) 0.09810 (13) 0.0659 (6)
H10A 0.4997 0.5563 0.1344 0.099*
H10B 0.4482 0.4703 0.0492 0.099*
H10C 0.4142 0.3033 0.1139 0.099*
C11 0.09705 (17) 1.2379 (5) 0.06201 (12) 0.0580 (5)
H11A 0.0339 1.1499 0.0729 0.087*
H11B 0.0780 1.2972 0.0097 0.087*
H11C 0.1195 1.4025 0.0942 0.087*
Cl1 0.07193 (4) 1.13418 (12) 0.33477 (3) 0.0656 (3)
N1 0.36194 (14) 0.5307 (4) 0.35576 (9) 0.0623 (5)
O1 0.34547 (11) 0.6869 (3) 0.09331 (7) 0.0585 (4)
O2 0.18526 (11) 1.0371 (3) 0.07552 (7) 0.0561 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0588 (11) 0.0528 (10) 0.0423 (10) −0.0142 (9) 0.0164 (8) −0.0043 (8)
C2 0.0742 (13) 0.0699 (12) 0.0404 (11) −0.0112 (10) 0.0193 (10) 0.0013 (9)
C3 0.0824 (14) 0.0736 (13) 0.0398 (11) −0.0076 (11) 0.0088 (10) 0.0115 (10)
C4 0.0543 (10) 0.0463 (10) 0.0428 (10) −0.0079 (8) 0.0094 (8) 0.0014 (8)
C5 0.0505 (10) 0.0487 (10) 0.0506 (11) 0.0030 (8) 0.0120 (8) 0.0001 (8)
C6 0.0498 (10) 0.0491 (9) 0.0438 (10) −0.0047 (8) 0.0162 (8) −0.0054 (8)
C7 0.0504 (10) 0.0460 (9) 0.0363 (9) −0.0045 (7) 0.0114 (7) −0.0014 (7)
C8 0.0467 (9) 0.0452 (9) 0.0405 (9) −0.0029 (7) 0.0121 (7) −0.0012 (7)
C9 0.0487 (9) 0.0445 (9) 0.0381 (9) −0.0113 (7) 0.0123 (7) −0.0036 (7)
C10 0.0635 (12) 0.0696 (13) 0.0717 (14) 0.0061 (11) 0.0303 (10) −0.0091 (11)
C11 0.0643 (12) 0.0611 (11) 0.0474 (11) 0.0071 (10) 0.0134 (9) 0.0054 (9)
Cl1 0.0735 (4) 0.0778 (4) 0.0532 (4) 0.0040 (3) 0.0302 (3) −0.0051 (2)
N1 0.0685 (11) 0.0630 (10) 0.0506 (10) −0.0002 (8) 0.0083 (8) 0.0112 (8)
O1 0.0633 (8) 0.0695 (9) 0.0478 (8) 0.0123 (7) 0.0239 (6) −0.0024 (6)
O2 0.0675 (8) 0.0654 (8) 0.0380 (7) 0.0129 (7) 0.0188 (6) 0.0068 (6)

Geometric parameters (Å, °)

C1—C2 1.360 (3) C6—C7 1.430 (3)
C1—C9 1.411 (3) C7—C8 1.361 (2)
C1—Cl1 1.740 (2) C7—O2 1.365 (2)
C2—C3 1.385 (3) C8—C9 1.418 (2)
C2—H2 0.9300 C8—H8 0.9300
C3—N1 1.325 (3) C10—O1 1.433 (2)
C3—H3 0.9300 C10—H10A 0.9600
C4—N1 1.370 (2) C10—H10B 0.9600
C4—C9 1.410 (3) C10—H10C 0.9600
C4—C5 1.414 (3) C11—O2 1.418 (2)
C5—C6 1.366 (3) C11—H11A 0.9600
C5—H5 0.9300 C11—H11B 0.9600
C6—O1 1.349 (2) C11—H11C 0.9600
C2—C1—C9 120.67 (19) C7—C8—C9 120.25 (17)
C2—C1—Cl1 119.85 (16) C7—C8—H8 119.9
C9—C1—Cl1 119.48 (14) C9—C8—H8 119.9
C1—C2—C3 118.27 (19) C4—C9—C1 116.33 (16)
C1—C2—H2 120.9 C4—C9—C8 119.53 (16)
C3—C2—H2 120.9 C1—C9—C8 124.14 (17)
N1—C3—C2 124.90 (18) O1—C10—H10A 109.5
N1—C3—H3 117.6 O1—C10—H10B 109.5
C2—C3—H3 117.6 H10A—C10—H10B 109.5
N1—C4—C9 123.24 (18) O1—C10—H10C 109.5
N1—C4—C5 117.57 (17) H10A—C10—H10C 109.5
C9—C4—C5 119.19 (16) H10B—C10—H10C 109.5
C6—C5—C4 120.80 (17) O2—C11—H11A 109.5
C6—C5—H5 119.6 O2—C11—H11B 109.5
C4—C5—H5 119.6 H11A—C11—H11B 109.5
O1—C6—C5 126.01 (17) O2—C11—H11C 109.5
O1—C6—C7 114.29 (15) H11A—C11—H11C 109.5
C5—C6—C7 119.69 (17) H11B—C11—H11C 109.5
C8—C7—O2 125.52 (16) C3—N1—C4 116.59 (18)
C8—C7—C6 120.54 (15) C6—O1—C10 117.47 (15)
O2—C7—C6 113.94 (15) C7—O2—C11 117.24 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···Cl1 0.93 2.70 3.0827 (17) 105

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2029).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Davies, J. E. & Bond, A. D. (2001). Acta Cryst. E57, o947–o949.
  3. Franck, X., Fournet, A., Prina, E., Mahieuxe, R., Hocquemiller, R. & Fiqadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635–3638. [DOI] [PubMed]
  4. Furuta, T., Sakai, T., Senga, T., Osawa, T., Kubo, K., Shimizu, T., Suzuki, R., Yoshino, T., Endo, M. & Miwa, A. (2006). J. Med. Chem. 49, 2186–2192. [DOI] [PubMed]
  5. Ilovich, O., Jacobson, O., Aviv, Y., Litchi, A., Chisin, R. & Mishani, E. (2008). Bioorg. Med. Chem. 16, 4242–4251. [DOI] [PubMed]
  6. Moret, V., Dereudre-Bosquet, N., Clayette, P., Laras, Y., Pietrancosta, N., Rolland, A., Weck, C., Marc, S. & Kraus, J. L. (2006). Bioorg. Med. Chem. Lett. 16, 5988–5992. [DOI] [PubMed]
  7. Rigaku (2005). CrystalClear Rigaku Americas Corporation, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763–o765.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042589/lr2029sup1.cif

e-67-o3012-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042589/lr2029Isup3.hkl

e-67-o3012-Isup3.hkl (89KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042589/lr2029Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES