Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):o3016. doi: 10.1107/S1600536811042528

1,1′-{2,2′-[1,4-Phenyl­enebis(methyl­ene)]bis­(­oxy)bis­(2,1-phenyl­ene)}diethanone

Nassir N N Al-Mohammed a, Yatimah Alias a, Zanariah Abdullah a, Hamid Khaledi a,*
PMCID: PMC3247415  PMID: 22220033

Abstract

The asymmetric unit of the title compound, C24H22O4, contains one half-mol­ecule, the other half being generated by a crystallographic center of inversion. The central benzene ring makes a dihedral angle of 72.49 (5)° with the terminal benzene ring. In the crystal, adjacent mol­ecules are linked through C—H⋯O inter­actions, forming a sheet structure parallel to the bc plane. The sheets are stacked along the a axis via π–π inter­actions formed between the terminal benzene rings [centroid–centroid separation = 3.7276 (6) Å].

Related literature

For related structures, see: Hu (2010); Tang et al. (2008).graphic file with name e-67-o3016-scheme1.jpg

Experimental

Crystal data

  • C24H22O4

  • M r = 374.42

  • Orthorhombic, Inline graphic

  • a = 6.8490 (1) Å

  • b = 15.0815 (2) Å

  • c = 17.8519 (3) Å

  • V = 1843.98 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.21 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.969, T max = 0.986

  • 15454 measured reflections

  • 2013 independent reflections

  • 1728 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.100

  • S = 1.06

  • 2013 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042528/is2792sup1.cif

e-67-o3016-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042528/is2792Isup2.hkl

e-67-o3016-Isup2.hkl (99.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042528/is2792Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 2.56 3.4649 (14) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

supplementary crystallographic information

Comment

The title compound was obtained through the condensation of α,α'-dibromo-p-xylene with two equivalents of 2'-hydroxyacetophenone. The compound has a centrosymmetric molecular structure, the centroid of the central aromatic ring being located on an inversion center. The central aromatic ring makes a dihedral angle of 72.49 (5)° with the terminal rings. This value is comparable to those observed in similar structures (Hu, 2010; Tang et al., 2008). In the crystal, the adjacent molecules are linked through C—H···O interactions (Table 1) to form a sheet parallel to the bc plane (Fig. 2). The sheets are connected into a three-dimensional network viaπ–π interactions formed between the terminal rings in the a direction [centroid-centroid separation = 3.7276 (6) Å].

Experimental

To a suspension of α,α'-dibromo-p-xylene (1 g, 3.8 mmol) and potassium carbonate (1.05 g, 7.6 mmol) in dry acetone (25 ml), 2'-hydroxyacetophenone (1.03 g, 7.6 mmol) was added portionwise and the mixture was refluxed for 48 hr. The solvent was then evaporated under reduced pressure and the crude material was extracted by dichloromethane (3 × 25 ml). The combined organic layers was washed with water and brine and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and the formed amorphous solid was re-crystallized from chloroform to obtain off-white crystals of the title compound (m.p. = 435–437 K).

Refinement

Hydrogen atoms were placed at calculated positions and refined as riding atoms, with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å, and with Uiso(H) set to 1.2 (1.5 for methyl) Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry code: ' = -x, -y, -z.]

Fig. 2.

Fig. 2.

The two-dimensional network in the bc plane formed by C—H···O interactions (dashed lines).

Crystal data

C24H22O4 F(000) = 792
Mr = 374.42 Dx = 1.349 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4755 reflections
a = 6.8490 (1) Å θ = 2.7–30.5°
b = 15.0815 (2) Å µ = 0.09 mm1
c = 17.8519 (3) Å T = 100 K
V = 1843.98 (5) Å3 Block, colorless
Z = 4 0.35 × 0.21 × 0.16 mm

Data collection

Bruker APEXII CCD diffractometer 2013 independent reflections
Radiation source: fine-focus sealed tube 1728 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.969, Tmax = 0.986 k = −19→19
15454 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.5451P] where P = (Fo2 + 2Fc2)/3
2013 reflections (Δ/σ)max < 0.001
128 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.04377 (13) 0.42646 (5) 0.16533 (5) 0.0229 (2)
O2 0.04118 (12) 0.15272 (5) 0.15468 (4) 0.0159 (2)
C1 0.07382 (18) 0.31010 (8) 0.07811 (6) 0.0203 (3)
H1A −0.0462 0.2780 0.0654 0.031*
H1B 0.1854 0.2696 0.0751 0.031*
H1C 0.0925 0.3591 0.0428 0.031*
C2 0.05802 (16) 0.34623 (7) 0.15636 (6) 0.0165 (3)
C3 0.05993 (16) 0.28692 (7) 0.22360 (6) 0.0146 (2)
C4 0.06897 (16) 0.32882 (8) 0.29338 (6) 0.0171 (3)
H4 0.0753 0.3917 0.2950 0.020*
C5 0.06905 (17) 0.28253 (8) 0.35995 (7) 0.0187 (3)
H5 0.0761 0.3130 0.4065 0.022*
C6 0.05866 (16) 0.19058 (8) 0.35781 (6) 0.0177 (3)
H6 0.0586 0.1579 0.4033 0.021*
C7 0.04836 (16) 0.14611 (7) 0.29006 (6) 0.0160 (2)
H7 0.0401 0.0832 0.2893 0.019*
C8 0.05005 (15) 0.19348 (7) 0.22261 (6) 0.0140 (2)
C9 0.02559 (17) 0.05749 (7) 0.15472 (6) 0.0162 (2)
H9A −0.0921 0.0387 0.1828 0.019*
H9B 0.1417 0.0308 0.1789 0.019*
C10 0.01168 (16) 0.02795 (7) 0.07449 (6) 0.0152 (2)
C11 0.17455 (17) 0.03233 (7) 0.02807 (6) 0.0177 (3)
H11 0.2946 0.0543 0.0472 0.021*
C12 0.16313 (17) 0.00478 (7) −0.04609 (6) 0.0172 (3)
H12 0.2750 0.0083 −0.0774 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0305 (5) 0.0127 (4) 0.0254 (4) 0.0002 (3) −0.0012 (4) 0.0010 (3)
O2 0.0239 (4) 0.0099 (4) 0.0138 (4) −0.0011 (3) −0.0001 (3) −0.0015 (3)
C1 0.0278 (6) 0.0157 (5) 0.0176 (6) −0.0019 (4) −0.0012 (5) 0.0030 (4)
C2 0.0145 (5) 0.0141 (5) 0.0210 (6) −0.0010 (4) −0.0013 (4) 0.0016 (4)
C3 0.0131 (5) 0.0136 (5) 0.0171 (6) 0.0001 (4) −0.0001 (4) −0.0005 (4)
C4 0.0172 (5) 0.0133 (5) 0.0207 (6) 0.0000 (4) −0.0002 (4) −0.0032 (4)
C5 0.0186 (6) 0.0213 (6) 0.0162 (6) −0.0008 (4) −0.0001 (4) −0.0056 (4)
C6 0.0174 (5) 0.0208 (6) 0.0150 (6) −0.0007 (4) 0.0002 (4) 0.0019 (4)
C7 0.0165 (5) 0.0134 (5) 0.0182 (6) −0.0001 (4) −0.0005 (4) 0.0000 (4)
C8 0.0127 (5) 0.0147 (5) 0.0147 (5) 0.0003 (4) −0.0004 (4) −0.0022 (4)
C9 0.0229 (6) 0.0097 (5) 0.0159 (5) 0.0000 (4) −0.0001 (4) −0.0002 (4)
C10 0.0220 (6) 0.0082 (5) 0.0153 (5) 0.0018 (4) −0.0010 (4) −0.0005 (4)
C11 0.0177 (6) 0.0150 (5) 0.0204 (6) −0.0019 (4) −0.0020 (4) −0.0019 (4)
C12 0.0191 (6) 0.0134 (5) 0.0193 (6) −0.0001 (4) 0.0028 (4) −0.0008 (4)

Geometric parameters (Å, °)

O1—C2 1.2246 (13) C6—C7 1.3846 (15)
O2—C8 1.3609 (13) C6—H6 0.9500
O2—C9 1.4401 (12) C7—C8 1.4002 (15)
C1—C2 1.5033 (15) C7—H7 0.9500
C1—H1A 0.9800 C9—C10 1.5029 (15)
C1—H1B 0.9800 C9—H9A 0.9900
C1—H1C 0.9800 C9—H9B 0.9900
C2—C3 1.4970 (15) C10—C12i 1.3907 (16)
C3—C4 1.3982 (15) C10—C11 1.3912 (16)
C3—C8 1.4109 (15) C11—C12 1.3897 (16)
C4—C5 1.3783 (16) C11—H11 0.9500
C4—H4 0.9500 C12—C10i 1.3908 (16)
C5—C6 1.3892 (16) C12—H12 0.9500
C5—H5 0.9500
C8—O2—C9 116.96 (8) C6—C7—C8 120.24 (10)
C2—C1—H1A 109.5 C6—C7—H7 119.9
C2—C1—H1B 109.5 C8—C7—H7 119.9
H1A—C1—H1B 109.5 O2—C8—C7 122.38 (9)
C2—C1—H1C 109.5 O2—C8—C3 117.68 (9)
H1A—C1—H1C 109.5 C7—C8—C3 119.95 (9)
H1B—C1—H1C 109.5 O2—C9—C10 107.45 (8)
O1—C2—C3 119.09 (10) O2—C9—H9A 110.2
O1—C2—C1 119.05 (10) C10—C9—H9A 110.2
C3—C2—C1 121.86 (9) O2—C9—H9B 110.2
C4—C3—C8 117.69 (10) C10—C9—H9B 110.2
C4—C3—C2 116.40 (10) H9A—C9—H9B 108.5
C8—C3—C2 125.90 (10) C12i—C10—C11 119.34 (10)
C5—C4—C3 122.64 (10) C12i—C10—C9 120.48 (10)
C5—C4—H4 118.7 C11—C10—C9 120.18 (10)
C3—C4—H4 118.7 C12—C11—C10 120.54 (11)
C4—C5—C6 118.80 (10) C12—C11—H11 119.7
C4—C5—H5 120.6 C10—C11—H11 119.7
C6—C5—H5 120.6 C11—C12—C10i 120.12 (11)
C7—C6—C5 120.68 (10) C11—C12—H12 119.9
C7—C6—H6 119.7 C10i—C12—H12 119.9
C5—C6—H6 119.7

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1ii 0.95 2.56 3.4649 (14) 158.

Symmetry codes: (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2792).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hu, T. (2010). Acta Cryst. E66, o995. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tang, K.-Z., Tang, Y., Li, Y.-F., Liu, W.-S. & Tan, M.-Y. (2008). Chin. J. Struct. Chem. 27, 451–454.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042528/is2792sup1.cif

e-67-o3016-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042528/is2792Isup2.hkl

e-67-o3016-Isup2.hkl (99.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042528/is2792Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES