Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3034. doi: 10.1107/S1600536811045314

N-(3-Fluoro­benzo­yl)-N′,N′′-bis­(4-methyl­phen­yl)phospho­ric triamide

Mehrdad Pourayoubi a,*, Samad Shoghpour a, Giuseppe Bruno b, Hadi Amiri Rudbari b
PMCID: PMC3247428  PMID: 22220046

Abstract

In the title compound, C21H21FN3O2P, the NH and P(=O) groups of the C(=O)NHP(=O) fragment are in a syn arrangement with respect to each other, as are the two amide H atoms of the two CH3–4-C6H4–NH moieties. In the crystal, mol­ecules are linked through N—H⋯O(=P) and N—H⋯O(=C) hydrogen bonds, forming R 2 2(8) and R 2 2(12) rings, which are arranged in chains parallel to [010].

Related literature

For hydrogen-bond patterns in phospho­ric triamides of the formula RC(O)NHP(O)[NR 1 R 2]2 and RC(O)NHP(O)[NHR 1]2, see: Toghraee et al. (2011). For different cyclic hydrogen-bond motifs, see: Pourayoubi et al. (2011).graphic file with name e-67-o3034-scheme1.jpg

Experimental

Crystal data

  • C21H21FN3O2P

  • M r = 397.38

  • Monoclinic, Inline graphic

  • a = 10.2132 (5) Å

  • b = 9.8588 (4) Å

  • c = 20.2711 (9) Å

  • β = 93.621 (2)°

  • V = 2037.02 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.662, T max = 0.745

  • 20105 measured reflections

  • 3844 independent reflections

  • 3061 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.04

  • 3844 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045314/lh5349sup1.cif

e-67-o3034-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045314/lh5349Isup2.hkl

e-67-o3034-Isup2.hkl (184.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.97 2.7835 (18) 157
N3—H3⋯O1ii 0.86 2.06 2.8972 (18) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

The possible hydrogen bond patterns in crystal structure of phosphoric triamides of the general formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 have been analyzed recently (Toghraee et al., 2011) and the hydrogen bonds strengths in these systems were discussed based on cyclic hydrogen bond motifs (Pourayoubi et al., 2011). It was concluded that the R22(8) ring motif is generated by a pair of P(═O)···H–NC(O)NHP(O) hydrogen bonds between two neighboring molecules in the crystal packing of phosphoric triamides of the formula RC(O)NHP(O)[NR1R2]2 which contain a syn orientation of P(═O) versus N—H. In the case of phosphoric triamides of the formula RC(O)NHP(O)[NHR1]2, crystal structure is usually composed of a chain of R22(8) and R22(12) ring motifs which alternately connected to each other. However, a few other hydrogen bond patterns were also found. The R22(8) motif is formed by two P(═O)···H–NC(O)NHP(O) hydrogen bonds and the R22(12) motif by two C(═O)···H–Namide hydrogen bonds. In this work, the synthesis and crystal structure of a new phosphoric triamide, P(O)[NHC(O)C6H4(3-F)][NH–C6H4–4–CH3]2, is reported. This investigation was carried out as part of a comprehensive study on the hydrogen bonds pattern in phosphoric triamides with formula RC(O)NHP(O)[NHR1]2. The phosphorus atom has a distorted tetrahedral environment (Fig. 1). Comparison of the O–P–N angles indicates that the O–P–N1 angle is smaller than ideal tetrahedral (107.02 (7)°) and the O–P–N2 and O–P–N3 angles (113.75 (7)° and 116.29 (7)°, respectively) display larger than ideal values. This probably arises due to steric repulsion involving the P(═O) group. Moreover, there is no π···π interaction between the two para-methyl phenyl groups. The C(═O) and P(═O) groups of the C(═O)NHP(═O) moiety are in anti positions relative to each other, contrary to the syn orientation of P(═O) and NH groups. The P(═O), C(═O) and P–N bond lengths and P–N–C bond angles are in the range of the expected values. In the crystal structure, molecules are linked through P(═O)···H–NC(O)NHP(O) and C(═ O)···H–Namide hydrogen bonds (Table 1), to give a linear chain running along the b axis.

Experimental

Synthesis of 3-F–C6H4C(O)NHP(O)Cl2 A mixture of phosphorus pentachloride (3.773 g, 18.12 mmol) and 3-fluorobenzamide (2.521 g, 18.12 mmol) were refluxed in CCl4 for 8 h, and then the resulting solution was cooled to the room temperature. Formic acid (0.834 g, 18.12 mmol) was syringed dropwise into the stirring solution in 20 min and stirred for 6 h to yield the white precipitate that was filtered and dried in vacuum.

Synthesis of the title molecule To a solution of 3-F–C6H4C(O)NHP(O)Cl2 (0.256 g, 1 mmol) in CHCl3 (20 ml), a mixture of p-toluidine (0.214 g, 2 mmol) and triethylamine (0.202 g, 2 mmol) in CHCl3 (5 ml) was added dropwise at 273 K. After 4 h stirring, the solvent was evaporated in vacuum and then the resulting solid was washed with distilled water. Single crystals of title compound were obtained from a mixture of CH3OH, CH3CN and n-C6H14 after slow evaporation at room temperature. IR (KBr, cm-1): 3355 (NH), 3313 (NH), 3081 (NH), 2921, 1651 (C═O), 1615, 1588, 1513, 1440, 1386, 1267, 1235, 1210, 961, 870, 861, 817, 751.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93-0.96Å; N—H = 0.86Å and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Ellipsoids are given at the 50% probability level.

Crystal data

C21H21FN3O2P F(000) = 832
Mr = 397.38 Dx = 1.296 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6910 reflections
a = 10.2132 (5) Å θ = 2.3–25.1°
b = 9.8588 (4) Å µ = 0.17 mm1
c = 20.2711 (9) Å T = 296 K
β = 93.621 (2)° Cubic, colorless
V = 2037.02 (16) Å3 0.25 × 0.22 × 0.14 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3844 independent reflections
Radiation source: fine-focus sealed tube 3061 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 25.7°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −12→12
Tmin = 0.662, Tmax = 0.745 k = −12→11
20105 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.6292P] where P = (Fo2 + 2Fc2)/3
3844 reflections (Δ/σ)max = 0.003
255 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.55273 (4) 0.28199 (4) 0.97803 (2) 0.03501 (15)
F1 0.00592 (13) 0.50210 (15) 1.10740 (8) 0.0863 (5)
O1 0.32311 (13) 0.10156 (12) 0.97315 (7) 0.0522 (4)
O2 0.62121 (12) 0.41249 (11) 0.97696 (6) 0.0424 (3)
N1 0.39319 (14) 0.31600 (13) 0.98654 (7) 0.0384 (4)
H1 0.3699 0.3994 0.9901 0.046*
N2 0.56968 (16) 0.18952 (15) 0.91224 (7) 0.0457 (4)
H2 0.5594 0.1032 0.9149 0.055*
N3 0.59807 (15) 0.17934 (14) 1.03822 (7) 0.0407 (4)
H3 0.6244 0.1001 1.0273 0.049*
C1 0.0244 (2) 0.3949 (2) 1.06744 (11) 0.0523 (5)
C2 0.14869 (18) 0.36985 (19) 1.04838 (10) 0.0462 (5)
H2A 0.2185 0.4259 1.0621 0.055*
C3 0.16722 (17) 0.25899 (17) 1.00822 (9) 0.0381 (4)
C4 0.29931 (18) 0.21885 (16) 0.98807 (9) 0.0375 (4)
C5 0.60112 (19) 0.24700 (18) 0.85011 (9) 0.0439 (4)
C6 0.7180 (2) 0.3164 (2) 0.84531 (11) 0.0558 (5)
H6 0.7763 0.3256 0.8822 0.067*
C7 0.7477 (3) 0.3719 (3) 0.78558 (12) 0.0684 (7)
H7 0.8258 0.4196 0.7831 0.082*
C8 0.6657 (3) 0.3589 (2) 0.72965 (11) 0.0726 (7)
C9 0.7009 (4) 0.4217 (3) 0.66478 (14) 0.1173 (13)
H9A 0.7807 0.3818 0.6512 0.176*
H9B 0.7130 0.5176 0.6705 0.176*
H9C 0.6314 0.4053 0.6316 0.176*
C10 0.06158 (19) 0.1775 (2) 0.98825 (10) 0.0492 (5)
H10 0.0741 0.1025 0.9616 0.059*
C11 −0.0622 (2) 0.2074 (2) 1.00776 (12) 0.0601 (6)
H11 −0.1329 0.1531 0.9936 0.072*
C12 −0.0815 (2) 0.3170 (2) 1.04808 (12) 0.0591 (6)
H12 −0.1645 0.3374 1.0617 0.071*
C13 0.59854 (18) 0.20754 (18) 1.10666 (9) 0.0410 (4)
C14 0.6514 (2) 0.1138 (2) 1.15103 (10) 0.0577 (5)
H14 0.6853 0.0331 1.1357 0.069*
C15 0.6545 (3) 0.1384 (3) 1.21817 (12) 0.0753 (7)
H15 0.6903 0.0735 1.2473 0.090*
C16 0.6059 (3) 0.2569 (3) 1.24288 (11) 0.0699 (7)
C17 0.5550 (3) 0.3505 (3) 1.19855 (12) 0.0721 (7)
H17 0.5225 0.4317 1.2142 0.087*
C18 0.5505 (2) 0.3279 (2) 1.13088 (11) 0.0609 (6)
H18 0.5154 0.3933 1.1019 0.073*
C19 0.6086 (4) 0.2837 (4) 1.31697 (12) 0.1036 (11)
H19A 0.6172 0.3794 1.3250 0.155*
H19B 0.6818 0.2370 1.3386 0.155*
H19C 0.5286 0.2517 1.3340 0.155*
C20 0.5180 (2) 0.2333 (2) 0.79481 (11) 0.0633 (6)
H20 0.4392 0.1869 0.7974 0.076*
C21 0.5505 (3) 0.2879 (3) 0.73502 (11) 0.0772 (8)
H21 0.4936 0.2766 0.6978 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0371 (3) 0.0248 (2) 0.0440 (3) 0.00215 (18) 0.00981 (19) −0.00342 (18)
F1 0.0618 (9) 0.0742 (9) 0.1262 (13) 0.0042 (7) 0.0322 (8) −0.0372 (9)
O1 0.0543 (8) 0.0277 (6) 0.0757 (9) −0.0005 (6) 0.0121 (7) −0.0088 (6)
O2 0.0414 (7) 0.0284 (6) 0.0589 (8) −0.0007 (5) 0.0146 (6) −0.0053 (6)
N1 0.0370 (8) 0.0245 (7) 0.0543 (9) 0.0032 (6) 0.0083 (7) −0.0023 (6)
N2 0.0605 (10) 0.0281 (7) 0.0503 (9) −0.0020 (7) 0.0171 (8) −0.0054 (7)
N3 0.0478 (9) 0.0273 (7) 0.0477 (9) 0.0088 (6) 0.0078 (7) −0.0044 (6)
C1 0.0467 (11) 0.0432 (11) 0.0681 (13) 0.0050 (9) 0.0131 (10) −0.0026 (10)
C2 0.0386 (10) 0.0372 (10) 0.0634 (12) −0.0022 (8) 0.0082 (9) −0.0043 (9)
C3 0.0394 (10) 0.0312 (8) 0.0441 (10) −0.0004 (7) 0.0050 (8) 0.0047 (7)
C4 0.0427 (10) 0.0277 (8) 0.0424 (9) −0.0009 (7) 0.0040 (8) −0.0001 (7)
C5 0.0524 (11) 0.0362 (9) 0.0443 (10) 0.0017 (8) 0.0137 (9) −0.0071 (8)
C6 0.0523 (12) 0.0636 (13) 0.0527 (12) −0.0067 (10) 0.0117 (10) −0.0048 (10)
C7 0.0773 (16) 0.0674 (15) 0.0634 (15) −0.0214 (13) 0.0275 (13) −0.0077 (12)
C8 0.113 (2) 0.0568 (13) 0.0499 (13) −0.0161 (14) 0.0230 (14) −0.0076 (11)
C9 0.200 (4) 0.098 (2) 0.0569 (16) −0.045 (3) 0.036 (2) 0.0000 (16)
C10 0.0486 (12) 0.0433 (10) 0.0556 (12) −0.0079 (9) 0.0027 (9) −0.0022 (9)
C11 0.0420 (12) 0.0631 (14) 0.0747 (15) −0.0108 (10) −0.0004 (10) 0.0009 (12)
C12 0.0368 (11) 0.0619 (13) 0.0796 (15) 0.0015 (10) 0.0108 (10) 0.0076 (12)
C13 0.0419 (10) 0.0363 (9) 0.0450 (10) −0.0035 (8) 0.0052 (8) −0.0018 (8)
C14 0.0731 (15) 0.0432 (11) 0.0556 (13) 0.0021 (10) −0.0059 (11) 0.0006 (9)
C15 0.110 (2) 0.0598 (14) 0.0541 (14) −0.0110 (14) −0.0124 (13) 0.0081 (12)
C16 0.0890 (18) 0.0740 (16) 0.0471 (12) −0.0304 (14) 0.0079 (12) −0.0068 (12)
C17 0.0956 (19) 0.0633 (14) 0.0590 (14) −0.0005 (14) 0.0174 (13) −0.0187 (12)
C18 0.0824 (16) 0.0496 (12) 0.0512 (12) 0.0142 (11) 0.0073 (11) −0.0072 (10)
C19 0.148 (3) 0.116 (2) 0.0475 (14) −0.048 (2) 0.0094 (16) −0.0108 (15)
C20 0.0697 (15) 0.0617 (14) 0.0588 (13) −0.0191 (12) 0.0068 (11) −0.0095 (11)
C21 0.107 (2) 0.0759 (17) 0.0473 (13) −0.0201 (16) −0.0021 (13) −0.0073 (12)

Geometric parameters (Å, °)

P1—O2 1.4652 (12) C9—H9A 0.9600
P1—N3 1.6297 (15) C9—H9B 0.9600
P1—N2 1.6336 (15) C9—H9C 0.9600
P1—N1 1.6830 (14) C10—C11 1.380 (3)
F1—C1 1.352 (2) C10—H10 0.9300
O1—C4 1.224 (2) C11—C12 1.377 (3)
N1—C4 1.357 (2) C11—H11 0.9300
N1—H1 0.8600 C12—H12 0.9300
N2—C5 1.436 (2) C13—C14 1.376 (3)
N2—H2 0.8600 C13—C18 1.386 (3)
N3—C13 1.415 (2) C14—C15 1.381 (3)
N3—H3 0.8600 C14—H14 0.9300
C1—C12 1.364 (3) C15—C16 1.376 (4)
C1—C2 1.373 (3) C15—H15 0.9300
C2—C3 1.383 (3) C16—C17 1.367 (4)
C2—H2A 0.9300 C16—C19 1.523 (3)
C3—C10 1.385 (3) C17—C18 1.388 (3)
C3—C4 1.488 (2) C17—H17 0.9300
C5—C20 1.369 (3) C18—H18 0.9300
C5—C6 1.385 (3) C19—H19A 0.9600
C6—C7 1.380 (3) C19—H19B 0.9600
C6—H6 0.9300 C19—H19C 0.9600
C7—C8 1.373 (4) C20—C21 1.386 (3)
C7—H7 0.9300 C20—H20 0.9300
C8—C21 1.378 (4) C21—H21 0.9300
C8—C9 1.517 (3)
O2—P1—N3 116.29 (8) C8—C9—H9C 109.5
O2—P1—N2 113.75 (7) H9A—C9—H9C 109.5
N3—P1—N2 103.00 (8) H9B—C9—H9C 109.5
O2—P1—N1 107.02 (7) C11—C10—C3 120.22 (19)
N3—P1—N1 106.15 (7) C11—C10—H10 119.9
N2—P1—N1 110.37 (8) C3—C10—H10 119.9
C4—N1—P1 123.49 (12) C12—C11—C10 120.4 (2)
C4—N1—H1 118.3 C12—C11—H11 119.8
P1—N1—H1 118.3 C10—C11—H11 119.8
C5—N2—P1 122.47 (12) C1—C12—C11 118.13 (19)
C5—N2—H2 118.8 C1—C12—H12 120.9
P1—N2—H2 118.8 C11—C12—H12 120.9
C13—N3—P1 126.55 (12) C14—C13—C18 118.45 (19)
C13—N3—H3 116.7 C14—C13—N3 119.09 (17)
P1—N3—H3 116.7 C18—C13—N3 122.44 (17)
F1—C1—C12 118.31 (18) C13—C14—C15 120.7 (2)
F1—C1—C2 118.40 (19) C13—C14—H14 119.7
C12—C1—C2 123.3 (2) C15—C14—H14 119.7
C1—C2—C3 118.11 (18) C16—C15—C14 121.4 (2)
C1—C2—H2A 120.9 C16—C15—H15 119.3
C3—C2—H2A 120.9 C14—C15—H15 119.3
C2—C3—C10 119.83 (17) C17—C16—C15 117.7 (2)
C2—C3—C4 122.14 (16) C17—C16—C19 120.9 (3)
C10—C3—C4 117.95 (16) C15—C16—C19 121.4 (3)
O1—C4—N1 120.64 (16) C16—C17—C18 121.9 (2)
O1—C4—C3 121.13 (16) C16—C17—H17 119.0
N1—C4—C3 118.22 (14) C18—C17—H17 119.0
C20—C5—C6 118.93 (19) C13—C18—C17 119.8 (2)
C20—C5—N2 121.18 (18) C13—C18—H18 120.1
C6—C5—N2 119.89 (18) C17—C18—H18 120.1
C7—C6—C5 119.7 (2) C16—C19—H19A 109.5
C7—C6—H6 120.1 C16—C19—H19B 109.5
C5—C6—H6 120.1 H19A—C19—H19B 109.5
C8—C7—C6 122.1 (2) C16—C19—H19C 109.5
C8—C7—H7 119.0 H19A—C19—H19C 109.5
C6—C7—H7 119.0 H19B—C19—H19C 109.5
C7—C8—C21 117.5 (2) C5—C20—C21 120.5 (2)
C7—C8—C9 120.8 (3) C5—C20—H20 119.8
C21—C8—C9 121.7 (3) C21—C20—H20 119.8
C8—C9—H9A 109.5 C8—C21—C20 121.3 (2)
C8—C9—H9B 109.5 C8—C21—H21 119.4
H9A—C9—H9B 109.5 C20—C21—H21 119.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 1.97 2.7835 (18) 157.
N3—H3···O1ii 0.86 2.06 2.8972 (18) 165.

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5349).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.
  4. Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045314/lh5349sup1.cif

e-67-o3034-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045314/lh5349Isup2.hkl

e-67-o3034-Isup2.hkl (184.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES