Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3039. doi: 10.1107/S1600536811043418

Benzene-1,3-dicarb­oxy­lic acid–1,2-bis­(4-pyrid­yl)ethene (1/1)

Dong Liu a,*, Ni-Ya Li a
PMCID: PMC3247433  PMID: 22220051

Abstract

In the title compound, C12H10N2·C8H6O4, the asymmetric unit contains two halves of 1,2-bis­(4-pyrid­yl)ethene (bpe) mol­ecules and one benzene-1,3-dicarb­oxy­lic acid (1,3-H2BDC) mol­ecule. These bpe and 1,3-H2BDC mol­ecules are linked by classical O—H⋯N hydrogen bonds, forming an extended one-dimensional zigzag chain. Each chain is further linked with neighboring ones by π–π inter­actions between the pyridine and aromatic rings [centroid–centroid distances = 3.9306 (15) Å] and the pyridine rings of pairs of symmetry-related mol­ecules [centroid–centroid distances = 3.5751 (15), 3.7350 (15) and 3.6882 (15) Å], with the formation of a three-dimensional supra­molecular framework.

Related literature

For structures and properties of self-assembled supramolecular compounds, see: Lehn (1990). For hydrogen-bonding inter­actions and π–π inter­actions in supramolecular compounds, see: Biradha (2003); Shan & Jones (2003); Weyna et al. (2009).graphic file with name e-67-o3039-scheme1.jpg

Experimental

Crystal data

  • C12H10N2·C8H6O4

  • M r = 348.35

  • Triclinic, Inline graphic

  • a = 6.8331 (14) Å

  • b = 6.8804 (14) Å

  • c = 18.618 (4) Å

  • α = 99.47 (3)°

  • β = 93.87 (3)°

  • γ = 102.69 (3)°

  • V = 837.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.40 × 0.40 × 0.35 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.962, T max = 0.967

  • 8280 measured reflections

  • 3054 independent reflections

  • 2153 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.137

  • S = 1.06

  • 3054 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043418/rk2306sup1.cif

e-67-o3039-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043418/rk2306Isup2.hkl

e-67-o3039-Isup2.hkl (149.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043418/rk2306Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.83 1.77 2.597 (2) 176
O3—H3⋯N2 0.83 1.79 2.618 (2) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University (grant No. 600581).

supplementary crystallographic information

Comment

In the past decades, the supramolecular synthesis of multicomponent organic materials has attracted considerable attention due to their functional properties (Lehn, 1990). The facile way of synthesizing these co-crystals is to employ the components containing complementary functional groups such as pyridine and carboxylic acid. Owing to the hydrogen-bonds and π–π stacking between these types of groups, several multicomponent cocrystals containing various network geometries were prepared using these two functional groups (Biradha, 2003; Shan & Jones, 2003; Weyna et al., 2009).

The hydrothermal reaction of 1,2-bis(4-pyridyl)ethene (bpe) with benzene-1,3-dicarboxylic acid (1,3-H2BDC) resulted in the cocrystals of C12H10N2.C8H6O4, I. In I, the asymmetric unit is formed by two halves of bpe molecules and one 1,3-H2BDC molecule (Fig. 1). These molecular units are linked by classical O–H···N hydrogen-bonds (O1–H1···N1iii, O1···N1iii = 2.597 (2)Å; O3–H3···N2, O3···N2 = 2.618 (2)Å) forming an extended one-dimensional zigzag chain (Table 1, Fig. 2). Furthermore, the adjacent one-dimensional chains are interconnected each other through π–π interactions between pairs of molecules [Cg1···Cg1iv = 3.5751 (15)Å; Cg1···Cg3 = 3.9306 (15)Å; Cg2···Cg2v = 3.7350 (15)Å; Cg2···Cg2vi = 3.7350 (15)Å form a three-dimensional framework (Fig. 3). The Cg1, Cg2 and Cg3, are the centroids of the rings N1/C9-C13, N2/C15-C19 and C1-C6. Symmetry codes: (iii) -x+1, y, z; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+1, -z+1 .

Experimental

To a 10 mL Pyrex glass tube was loaded 1,2-bis(4-pyridyl)ethene (18 mg, 0.1 mmol), benzene-1,3-dicarboxylic acid (17 mg, 0.1 mmol) and 3 ml of H2O. The tube was sealed and heated in an oven to 423 K for three days, and then cooled to ambient temperature at the rate of 5 K h-1 to form yellow crystals.

Refinement

All H atoms were placed in geometrically idealized positions (C–H = 0.94Å for phenyl, pyridyl and vinyl groups, O–H = 0.83Å for OH group) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are presented at the 30% probability level. Symmetry codes: (i) -x+2, -y+2, -z+1; (ii): -x, -y+1, -z+2; (iii) x+1, y, z.

Fig. 2.

Fig. 2.

The one-dimensional zigzag chain linked by hydrogen-bonding interactions. The blue dashed lines represent the hydrogen-bonds.

Fig. 3.

Fig. 3.

The three-dimensional supramolecular framework linked by hydrogen-bonding interactions and π–π interactions. The blue and cyan dashed lines represent the hydrogen-bonds and π–π interactions, respectively.

Crystal data

C12H10N2·C8H6O4 Z = 2
Mr = 348.35 F(000) = 364
Triclinic, P1 Dx = 1.382 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8331 (14) Å Cell parameters from 2779 reflections
b = 6.8804 (14) Å θ = 3.1–25.4°
c = 18.618 (4) Å µ = 0.10 mm1
α = 99.47 (3)° T = 223 K
β = 93.87 (3)° Block, yellow
γ = 102.69 (3)° 0.40 × 0.40 × 0.35 mm
V = 837.4 (3) Å3

Data collection

Rigaku Mercury CCD diffractometer 3054 independent reflections
Radiation source: fine-focus sealed tube 2153 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan (REQAB; Jacobson, 1998) h = −8→8
Tmin = 0.962, Tmax = 0.967 k = −7→8
8280 measured reflections l = −22→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1982P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3054 reflections Δρmax = 0.23 e Å3
238 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (4)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1898 (3) 0.1743 (2) 0.81468 (9) 0.0437 (5)
H1 −0.2835 0.1999 0.8378 0.065*
O2 −0.2446 (3) −0.0994 (3) 0.86694 (10) 0.0528 (5)
O3 0.5207 (2) 0.0878 (2) 0.62885 (9) 0.0417 (4)
H3 0.5796 0.1779 0.6079 0.063*
O4 0.4236 (3) 0.3460 (2) 0.69323 (9) 0.0495 (5)
N1 0.5203 (3) 0.2721 (3) 0.88516 (10) 0.0348 (5)
N2 0.6910 (3) 0.3812 (3) 0.56392 (10) 0.0353 (5)
C1 0.0121 (3) −0.0583 (3) 0.78717 (11) 0.0306 (5)
C2 0.1342 (3) 0.0735 (3) 0.75112 (11) 0.0292 (5)
H2 0.1109 0.2030 0.7507 0.035*
C3 0.2909 (3) 0.0166 (3) 0.71557 (11) 0.0283 (5)
C4 0.3240 (3) −0.1741 (3) 0.71652 (11) 0.0346 (5)
H4 0.4293 −0.2141 0.6925 0.041*
C5 0.2028 (4) −0.3062 (3) 0.75262 (12) 0.0403 (6)
H5 0.2260 −0.4357 0.7530 0.048*
C6 0.0478 (4) −0.2489 (3) 0.78806 (12) 0.0369 (6)
H6 −0.0337 −0.3389 0.8128 0.044*
C7 −0.1539 (3) 0.0031 (3) 0.82700 (12) 0.0347 (5)
C8 0.4193 (3) 0.1663 (3) 0.67866 (11) 0.0327 (5)
C9 0.4644 (3) 0.4451 (4) 0.88158 (12) 0.0380 (6)
H9 0.5339 0.5335 0.8533 0.046*
C10 0.3099 (3) 0.4988 (3) 0.91739 (12) 0.0372 (6)
H10 0.2752 0.6216 0.9132 0.045*
C11 0.2046 (3) 0.3725 (3) 0.95979 (11) 0.0334 (5)
C12 0.2643 (3) 0.1941 (4) 0.96377 (12) 0.0390 (6)
H12 0.1989 0.1041 0.9923 0.047*
C13 0.4199 (3) 0.1495 (4) 0.92569 (12) 0.0379 (6)
H13 0.4568 0.0270 0.9284 0.046*
C14 0.0399 (3) 0.4214 (4) 1.00081 (13) 0.0391 (6)
H14 −0.0139 0.3314 1.0313 0.047*
C15 0.7001 (3) 0.3777 (3) 0.49225 (12) 0.0342 (5)
H15 0.6506 0.2538 0.4597 0.041*
C16 0.7789 (3) 0.5474 (3) 0.46388 (12) 0.0332 (5)
H16 0.7805 0.5380 0.4130 0.040*
C17 0.8558 (3) 0.7326 (3) 0.51039 (12) 0.0324 (5)
C18 0.8411 (3) 0.7367 (4) 0.58473 (12) 0.0383 (6)
H18 0.8865 0.8590 0.6184 0.046*
C19 0.7600 (3) 0.5615 (4) 0.60859 (12) 0.0404 (6)
H19 0.7522 0.5677 0.6591 0.049*
C20 0.9500 (3) 0.9104 (3) 0.48071 (12) 0.0353 (5)
H20 0.9390 0.8969 0.4294 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0436 (11) 0.0443 (10) 0.0532 (10) 0.0215 (8) 0.0243 (8) 0.0151 (8)
O2 0.0570 (12) 0.0512 (11) 0.0617 (11) 0.0181 (9) 0.0331 (9) 0.0247 (9)
O3 0.0466 (11) 0.0339 (9) 0.0481 (10) 0.0108 (8) 0.0249 (8) 0.0073 (8)
O4 0.0646 (12) 0.0296 (10) 0.0625 (11) 0.0167 (8) 0.0341 (9) 0.0129 (8)
N1 0.0284 (11) 0.0395 (11) 0.0360 (10) 0.0086 (9) 0.0060 (8) 0.0037 (9)
N2 0.0294 (11) 0.0360 (11) 0.0406 (11) 0.0080 (8) 0.0077 (8) 0.0058 (9)
C1 0.0326 (12) 0.0319 (12) 0.0271 (11) 0.0088 (10) 0.0034 (9) 0.0033 (9)
C2 0.0339 (13) 0.0262 (11) 0.0285 (11) 0.0099 (10) 0.0037 (9) 0.0038 (9)
C3 0.0305 (12) 0.0267 (11) 0.0278 (11) 0.0087 (9) 0.0033 (9) 0.0024 (9)
C4 0.0389 (14) 0.0348 (13) 0.0330 (12) 0.0150 (11) 0.0077 (10) 0.0049 (10)
C5 0.0506 (16) 0.0309 (13) 0.0443 (14) 0.0174 (12) 0.0113 (11) 0.0074 (11)
C6 0.0436 (15) 0.0317 (12) 0.0378 (13) 0.0094 (11) 0.0097 (10) 0.0103 (10)
C7 0.0343 (13) 0.0349 (13) 0.0348 (12) 0.0085 (11) 0.0055 (10) 0.0049 (10)
C8 0.0341 (13) 0.0335 (13) 0.0324 (12) 0.0127 (10) 0.0082 (9) 0.0035 (10)
C9 0.0341 (13) 0.0397 (14) 0.0416 (13) 0.0083 (11) 0.0118 (10) 0.0091 (11)
C10 0.0361 (14) 0.0354 (13) 0.0423 (13) 0.0121 (11) 0.0096 (10) 0.0060 (11)
C11 0.0289 (12) 0.0397 (13) 0.0293 (11) 0.0080 (10) 0.0022 (9) 0.0003 (10)
C12 0.0383 (14) 0.0419 (14) 0.0396 (13) 0.0112 (11) 0.0115 (10) 0.0103 (11)
C13 0.0353 (14) 0.0399 (13) 0.0413 (13) 0.0149 (11) 0.0059 (10) 0.0063 (11)
C14 0.0341 (13) 0.0451 (14) 0.0398 (12) 0.0111 (11) 0.0133 (10) 0.0067 (11)
C15 0.0281 (12) 0.0332 (13) 0.0408 (13) 0.0094 (10) 0.0055 (9) 0.0018 (10)
C16 0.0299 (12) 0.0346 (13) 0.0356 (12) 0.0105 (10) 0.0035 (9) 0.0037 (10)
C17 0.0246 (12) 0.0319 (12) 0.0394 (12) 0.0067 (10) 0.0016 (9) 0.0037 (10)
C18 0.0349 (13) 0.0347 (13) 0.0385 (13) 0.0006 (11) 0.0038 (10) −0.0021 (11)
C19 0.0360 (14) 0.0473 (15) 0.0344 (12) 0.0041 (11) 0.0074 (10) 0.0036 (11)
C20 0.0332 (13) 0.0345 (12) 0.0387 (13) 0.0082 (10) 0.0028 (10) 0.0083 (10)

Geometric parameters (Å, °)

O1—C7 1.307 (3) C9—C10 1.371 (3)
O1—H1 0.8300 C9—H9 0.9400
O2—C7 1.215 (3) C10—C11 1.387 (3)
O3—C8 1.310 (2) C10—H10 0.9400
O3—H3 0.8300 C11—C12 1.387 (3)
O4—C8 1.215 (3) C11—C14 1.470 (3)
N1—C13 1.333 (3) C12—C13 1.378 (3)
N1—C9 1.338 (3) C12—H12 0.9400
N2—C15 1.336 (3) C13—H13 0.9400
N2—C19 1.343 (3) C14—C14i 1.318 (5)
C1—C2 1.383 (3) C14—H14 0.9400
C1—C6 1.387 (3) C15—C16 1.378 (3)
C1—C7 1.495 (3) C15—H15 0.9400
C2—C3 1.390 (3) C16—C17 1.390 (3)
C2—H2 0.9400 C16—H16 0.9400
C3—C4 1.383 (3) C17—C18 1.390 (3)
C3—C8 1.490 (3) C17—C20 1.463 (3)
C4—C5 1.382 (3) C18—C19 1.369 (3)
C4—H4 0.9400 C18—H18 0.9400
C5—C6 1.381 (3) C19—H19 0.9400
C5—H5 0.9400 C20—C20ii 1.333 (4)
C6—H6 0.9400 C20—H20 0.9400
C7—O1—H1 109.5 C9—C10—H10 119.9
C8—O3—H3 109.5 C11—C10—H10 119.9
C13—N1—C9 117.51 (19) C10—C11—C12 116.8 (2)
C15—N2—C19 116.9 (2) C10—C11—C14 123.4 (2)
C2—C1—C6 119.4 (2) C12—C11—C14 119.8 (2)
C2—C1—C7 121.13 (19) C13—C12—C11 119.7 (2)
C6—C1—C7 119.4 (2) C13—C12—H12 120.2
C1—C2—C3 120.74 (19) C11—C12—H12 120.2
C1—C2—H2 119.6 N1—C13—C12 123.1 (2)
C3—C2—H2 119.6 N1—C13—H13 118.5
C4—C3—C2 119.2 (2) C12—C13—H13 118.5
C4—C3—C8 122.45 (19) C14i—C14—C11 126.6 (3)
C2—C3—C8 118.30 (18) C14i—C14—H14 116.7
C5—C4—C3 120.3 (2) C11—C14—H14 116.7
C5—C4—H4 119.9 N2—C15—C16 123.0 (2)
C3—C4—H4 119.9 N2—C15—H15 118.5
C6—C5—C4 120.3 (2) C16—C15—H15 118.5
C6—C5—H5 119.9 C15—C16—C17 120.1 (2)
C4—C5—H5 119.9 C15—C16—H16 120.0
C5—C6—C1 120.1 (2) C17—C16—H16 120.0
C5—C6—H6 120.0 C16—C17—C18 116.7 (2)
C1—C6—H6 120.0 C16—C17—C20 120.1 (2)
O2—C7—O1 124.3 (2) C18—C17—C20 123.1 (2)
O2—C7—C1 121.9 (2) C19—C18—C17 119.6 (2)
O1—C7—C1 113.81 (19) C19—C18—H18 120.2
O4—C8—O3 123.6 (2) C17—C18—H18 120.2
O4—C8—C3 121.53 (19) N2—C19—C18 123.7 (2)
O3—C8—C3 114.84 (18) N2—C19—H19 118.2
N1—C9—C10 122.7 (2) C18—C19—H19 118.2
N1—C9—H9 118.6 C20ii—C20—C17 126.3 (3)
C10—C9—H9 118.6 C20ii—C20—H20 116.8
C9—C10—C11 120.2 (2) C17—C20—H20 116.8

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1iii 0.83 1.77 2.597 (2) 176.
O3—H3···N2 0.83 1.79 2.618 (2) 176.

Symmetry codes: (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2306).

References

  1. Biradha, K. (2003). CrystEngComm, 5, 374–384.
  2. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  3. Lehn, M. L. (1990). Angew. Chem. Int. Ed. 29, 1304-1319.
  4. Rigaku (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  6. Shan, N. & Jones, W. (2003). Tetrahedron Lett. 44, 3687–3689.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Weyna, D., Shattock, R. T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043418/rk2306sup1.cif

e-67-o3039-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043418/rk2306Isup2.hkl

e-67-o3039-Isup2.hkl (149.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043418/rk2306Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES