Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3046–o3047. doi: 10.1107/S1600536811043480

C—H⋯π packing inter­actions in 2-[5,5-bis­(4-benzyl­oxyphen­yl)-3-cyano-4-methyl-2,5-dihydro­furan-2-yl­idene]malononitrile

Graeme J Gainsford a,*, Jack Anderson a, M Delower H Bhuiyan a, Andrew J Kay a
PMCID: PMC3247440  PMID: 22220058

Abstract

The title mol­ecule, C35H25N3O3, packs utilizing C—H⋯π attractive inter­actions causing the identical 4-benzyl­oxyphenyl groups to pack with different conformational angles. This difference is consistent with the variable inter­planar dihedral angles found in closely related structures.

Related literature

For general background, see: Smith et al. (2006, 2010); Teshome et al. (2009); Datta & Pati (2003). For related structures, see: Li et al. (2005); Nikitin et al. (2010); Roesky et al. (1997); Wang et al. (2007); Gainsford et al. (2008). For synthesis details, see: Anderson (2009). For C—H⋯π bonding, see: Desiraju & Steiner (1999).graphic file with name e-67-o3046-scheme1.jpg

Experimental

Crystal data

  • C35H25N3O3

  • M r = 535.58

  • Monoclinic, Inline graphic

  • a = 18.1696 (8) Å

  • b = 10.0728 (5) Å

  • c = 15.8413 (7) Å

  • β = 103.779 (3)°

  • V = 2815.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.35 × 0.21 × 0.09 mm

Data collection

  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995; Bruker, 2005) T min = 0.664, T max = 0.746

  • 62528 measured reflections

  • 7017 independent reflections

  • 4764 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.115

  • S = 1.05

  • 7017 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043480/bg2427sup1.cif

e-67-o3046-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043480/bg2427Isup2.hkl

e-67-o3046-Isup2.hkl (336.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043480/bg2427Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 and C23–C28, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg1i 0.95 2.85 3.596 (2) 136
C29—-H29ACg1ii 0.99 2.59 3.5276 (17) 158
C33—-H33⋯Cg2iii 0.95 2.77 3.697 (3) 167
C16—-H16BCg3iv 0.99 2.97 3.9262 (18) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Drs J. Wikaira and C. Fitchett of the University of Canterbury for their assistance in data collection.

supplementary crystallographic information

Comment

New electro-optic modulators will be key components for high capacity transmissions in the telecommunications industry. Organic nonlinear optical (NLO) chromophores appear to offer a very attractive alternative to currently used inorganic materials (e.g. LiNbO3) as they have a much faster response times, are easer to prepare, have low drive voltages and low signal losses. However, issues of aggregation, photochemical & thermal stability are proving significant barriers to the successful uptake of organic NLO materials. A considerable effort has been made over the last two decades to develop organic chromophores with the largest possible NLO response. Due to their dipolar nature, strong electrostatic interactions are possible between individual NLO chromophore molecules which leads to a significant tendency to aggregate (Smith et al., 2006; Datta & Pati, 2003; Teshome et al., 2009). Therefore, much effort has been expended developing methods to minimize aggregation between NLO chromophores(Smith et al., 2010).

One of the most successful strategies to minimize aggregation has been to add bulky pendant groups onto the chromophores. If the pendant groups are aromatic in nature, stacking interactions between the aromatic rings may result, which can overcome the dipole-dipole interactions that cause aggregation (Smith et al., 2010). We have synthesized a new acceptor (the title compound) with bulky groups to reduce aggregation as well as reduce, or even eliminate rotation around the conjugated polyene bridge - acceptor bond.

The asymmetric unit contents of the title compound(I) are shown in Figure 1. The 5-membered ring plane of atoms O1,C4—C7 (hereafter "CDFP", [3-cyano-5,5-dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar with maximum out of plane deviation for O1 of 0.023 (1) Å. The dicyano group (N1,C1,C2,C3,N2,C6) is planar but twisted by 5.32 (10) ° with respect to the "CDFP" group; this is similar to the twist in related compound NOJKUT (Gainsford et al., 2008) of 5.69 (17) °. Atom C5 is essentially tetrahedral with the C23–C5–C10 angle widened to 115.83 (11) ° and the internal O1–C5–C4 102.11 (10) °. The phenyl rings are either close to or statistically planar (e.g. ring C17–C22, maximum deviation C19, 0.007 (2) Å). The mean planes of the phenyl groups bound directly to the CDFP atom C5 (C10–C15, C23–C28) make angles of 88.70 (8) & 67.60 (8) ° to the CDFP plane and 69.84 (7) ° to each other. This last value is similar to those observed in 1,1,1-tris(4-benzyloxyphenyl)ethane 78.26 (17), 88.89 (17) & 86.27 (18) ° (GERLIY, Roesky et al., 1997), 2,2-bis(4-(benzoyloxy)phenyl)propane 80.3 (1) ° (KIKKAR, Wang et al., 2007) and bis(4-(benzyloxy)phenyl)methane 84.9 (2) & 81.5 (2) ° (SUHNEP, Nikitin et al., 2010). (Compound REFCODES are from the C.S.D., Version 5.32, with August 2011 updates; Allen, 2002).

The main difference observed in the structure is in the relative angular dispositions of the terminal phenyl groups. Here significant differences are seen with the different angles to their attached phenyl rings: 88.79 ° (C17–C22) and 37.81 (8) ° (C30–C35) respectively. It is only after consideration of the molecular packing that this deviation for the pendant identical chemical groups can be rationalized. The crystal packing is dominated by C–H···π bonds (no other significant interactions are observed) with the strongest interaction involving the methylene hydrogen on C29 (H29A) and the phenyl hydrogen H33 (Table 1, Figure 2). The normal expectation for linked biphenyl rings is for their dihedral angles to be ~90 ° to alleviate adjacent ring H···H interactions. Here the restricted twist (\sim 38 °) noted for just one of the ligand arms (involving C23–C28 & C30–C35 rings) ensures optimal C—H···π attractive overlap between glide plane related molecules.

The benzoyloxy-phenyl ring dihedral angles in the comparable structures, whilst variable, are reasonably consistent with the above analysis. For KIKKAR, the angle is 76.54 (9) ° with one C—H···π interaction involving the methylene hydrogen and for SUHNEP, 10.4 (2) & 8.6 (2) ° with six C–H···π interactions utilizing methylene & phenyl hydrogen atoms. Finally for GERLIY the angles are 78.9 (2), 7.7 (2) and 30.6 (2) ° with two C–H···π interactions involving one methylene and one phenyl hydrogen. Apparently, the orientation of the terminal benzoylozy groups with respect to the attached phenyl group is highly dependent on the C–H···π interactions, so no strict orientation rule can be defined.

There are other intermolecular interactions in (I) (Table 1) but the two highlighted (Figure 2 and above) are both closer (Cg···H < 2.8 Å) and have maximized C–H···Cg angles (Desiraju & Steiner, 1999). In Table 1 & Figure 2, labels Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 & C23–C28 respectively. In conclusion, we note that C–H···π interactions add to the list of weak but important interactions in crystal formation, so that the preferred molecular alignment of the target molecules is not attained.

Experimental

Compound(I) was prepared by the condensation of 1,1-bis(4-(benzyloxy)phenyl)-1-hydroxypropan-2-one with 4 equivalents of malononitrile over 10 days as described in Anderson (2009). Crystals were obtained from a 1:1 dichloromethane:acetone mixture.

Refinement

Five reflections affected by the backstop and 6 others which were clearly outlier data (also at low angle) were omitted from the refinements (using OMIT). The methyl and other H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.98 & 0.99 Å).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram [Mercury, Macrae et al.,(2008)] of the unit cell. Non-hydrogen atoms, ring centroids (Cg) and H atoms involved in C–H···π bonding shown as balls: two close contacts indicated by dotted lines identify the bonds (see text). Symmetry (i) 1 - x, 1 - y, 1 - z (ii) x, 1.5 - y, 1/2 + z (iii) 1 - x, y - 1/2, 1/2 - z.

Crystal data

C35H25N3O3 F(000) = 1120
Mr = 535.58 Dx = 1.263 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7358 reflections
a = 18.1696 (8) Å θ = 2.3–26.7°
b = 10.0728 (5) Å µ = 0.08 mm1
c = 15.8413 (7) Å T = 123 K
β = 103.779 (3)° Triangular, pink
V = 2815.8 (2) Å3 0.35 × 0.21 × 0.09 mm
Z = 4

Data collection

Bruker–Nonius APEXII CCD area-detector diffractometer 7017 independent reflections
Radiation source: fine-focus sealed tube 4764 reflections with I > 2σ(I)
graphite Rint = 0.073
Detector resolution: 8.333 pixels mm-1 θmax = 28.5°, θmin = 2.6°
φ and ω scans h = −24→24
Absorption correction: multi-scan (Software?; Blessing, 1995) k = −13→13
Tmin = 0.664, Tmax = 0.746 l = −21→21
62528 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.6136P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
7017 reflections Δρmax = 0.26 e Å3
372 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0023 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.12002 (5) 0.68767 (10) 0.34643 (6) 0.0281 (2)
O2 0.39969 (6) 0.75816 (11) 0.64285 (6) 0.0345 (3)
O3 0.25635 (6) 0.44822 (11) 0.04549 (6) 0.0378 (3)
N1 −0.12627 (9) 0.69465 (18) 0.39894 (12) 0.0612 (5)
N2 0.02878 (9) 0.99105 (17) 0.32599 (10) 0.0516 (4)
N3 −0.05524 (8) 0.37366 (16) 0.41384 (10) 0.0507 (4)
C1 −0.07014 (10) 0.71929 (18) 0.38148 (11) 0.0423 (4)
C2 0.00032 (8) 0.74932 (16) 0.36127 (9) 0.0325 (3)
C3 0.01570 (9) 0.88387 (18) 0.34204 (10) 0.0374 (4)
C4 0.12121 (8) 0.46134 (15) 0.37889 (9) 0.0279 (3)
C5 0.17157 (8) 0.57042 (14) 0.35864 (9) 0.0259 (3)
C6 0.05397 (8) 0.65399 (15) 0.36280 (9) 0.0277 (3)
C7 0.05349 (8) 0.51294 (15) 0.38106 (9) 0.0285 (3)
C8 −0.00822 (9) 0.43825 (16) 0.39840 (10) 0.0350 (4)
C9 0.14590 (10) 0.32107 (15) 0.39324 (11) 0.0385 (4)
H9A 0.1042 0.2675 0.4045 0.058*
H9B 0.1895 0.3157 0.4433 0.058*
H9C 0.1603 0.2873 0.3414 0.058*
C10 0.23631 (8) 0.60639 (14) 0.43524 (9) 0.0256 (3)
C11 0.30259 (8) 0.66571 (15) 0.42418 (9) 0.0290 (3)
H11 0.3107 0.6735 0.3673 0.035*
C12 0.35666 (8) 0.71334 (15) 0.49400 (9) 0.0305 (3)
H12 0.4020 0.7517 0.4852 0.037*
C13 0.34456 (8) 0.70514 (15) 0.57738 (9) 0.0290 (3)
C14 0.27911 (8) 0.64498 (15) 0.58974 (9) 0.0306 (3)
H14 0.2708 0.6379 0.6465 0.037*
C15 0.22617 (8) 0.59547 (15) 0.51933 (9) 0.0293 (3)
H15 0.1820 0.5531 0.5285 0.035*
C16 0.38713 (9) 0.74530 (18) 0.72893 (9) 0.0399 (4)
H16A 0.3792 0.6507 0.7413 0.048*
H16B 0.3410 0.7951 0.7326 0.048*
C17 0.45409 (9) 0.79826 (16) 0.79476 (9) 0.0332 (4)
C18 0.51398 (10) 0.71623 (18) 0.83300 (10) 0.0405 (4)
H18 0.5142 0.6262 0.8152 0.049*
C19 0.57374 (10) 0.76491 (19) 0.89730 (11) 0.0444 (4)
H19 0.6151 0.7087 0.9226 0.053*
C20 0.57305 (10) 0.89412 (19) 0.92428 (11) 0.0432 (4)
H20 0.6135 0.9268 0.9690 0.052*
C21 0.51405 (9) 0.97639 (19) 0.88694 (11) 0.0441 (4)
H21 0.5137 1.0660 0.9055 0.053*
C22 0.45512 (9) 0.92836 (17) 0.82220 (11) 0.0386 (4)
H22 0.4146 0.9859 0.7962 0.046*
C23 0.19339 (8) 0.54421 (14) 0.27323 (9) 0.0258 (3)
C24 0.15600 (8) 0.60416 (15) 0.19629 (9) 0.0285 (3)
H24 0.1167 0.6662 0.1968 0.034*
C25 0.17488 (8) 0.57509 (15) 0.11830 (9) 0.0305 (3)
H25 0.1488 0.6172 0.0661 0.037*
C26 0.23175 (8) 0.48458 (15) 0.11714 (9) 0.0288 (3)
C27 0.26916 (8) 0.42278 (15) 0.19397 (9) 0.0306 (3)
H27 0.3078 0.3596 0.1932 0.037*
C28 0.25050 (8) 0.45259 (15) 0.27101 (9) 0.0292 (3)
H28 0.2767 0.4104 0.3232 0.035*
C29 0.22598 (9) 0.51569 (16) −0.03469 (9) 0.0341 (4)
H29A 0.2287 0.6130 −0.0258 0.041*
H29B 0.1723 0.4905 −0.0581 0.041*
C30 0.27319 (10) 0.47451 (15) −0.09672 (10) 0.0356 (4)
C31 0.35127 (10) 0.46188 (17) −0.06759 (11) 0.0431 (4)
H31 0.3750 0.4812 −0.0087 0.052*
C32 0.39502 (12) 0.42104 (19) −0.12404 (13) 0.0551 (5)
H32 0.4483 0.4109 −0.1035 0.066*
C33 0.36105 (14) 0.39554 (19) −0.20918 (14) 0.0607 (6)
H33 0.3909 0.3671 −0.2476 0.073*
C34 0.28422 (15) 0.41071 (18) −0.23958 (12) 0.0569 (6)
H34 0.2612 0.3942 −0.2991 0.068*
C35 0.23988 (12) 0.45034 (16) −0.18336 (10) 0.0447 (4)
H35 0.1867 0.4608 −0.2046 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0257 (5) 0.0299 (6) 0.0299 (5) 0.0039 (4) 0.0088 (4) 0.0006 (4)
O2 0.0341 (6) 0.0465 (7) 0.0231 (5) −0.0072 (5) 0.0073 (4) −0.0020 (5)
O3 0.0513 (7) 0.0409 (6) 0.0252 (5) 0.0108 (5) 0.0173 (5) 0.0047 (5)
N1 0.0379 (9) 0.0759 (12) 0.0742 (12) 0.0119 (8) 0.0223 (8) 0.0099 (10)
N2 0.0505 (10) 0.0466 (10) 0.0561 (10) 0.0130 (8) 0.0097 (8) 0.0069 (8)
N3 0.0436 (9) 0.0545 (10) 0.0581 (10) −0.0150 (7) 0.0205 (8) −0.0137 (8)
C1 0.0325 (9) 0.0510 (11) 0.0433 (10) 0.0102 (8) 0.0092 (8) 0.0017 (8)
C2 0.0268 (8) 0.0419 (9) 0.0285 (8) 0.0048 (7) 0.0058 (6) −0.0011 (7)
C3 0.0327 (9) 0.0458 (11) 0.0328 (8) 0.0135 (8) 0.0061 (7) 0.0010 (8)
C4 0.0312 (8) 0.0313 (8) 0.0221 (7) −0.0023 (6) 0.0080 (6) −0.0032 (6)
C5 0.0253 (7) 0.0266 (7) 0.0262 (7) 0.0045 (6) 0.0072 (6) 0.0011 (6)
C6 0.0236 (7) 0.0390 (9) 0.0199 (7) 0.0000 (6) 0.0039 (6) −0.0036 (6)
C7 0.0277 (8) 0.0344 (8) 0.0239 (7) −0.0037 (6) 0.0075 (6) −0.0051 (6)
C8 0.0317 (8) 0.0403 (9) 0.0340 (8) −0.0057 (7) 0.0098 (7) −0.0103 (7)
C9 0.0450 (10) 0.0301 (9) 0.0446 (9) −0.0006 (7) 0.0187 (8) −0.0012 (7)
C10 0.0270 (7) 0.0257 (7) 0.0247 (7) 0.0038 (6) 0.0072 (6) 0.0010 (6)
C11 0.0308 (8) 0.0346 (8) 0.0236 (7) 0.0013 (6) 0.0102 (6) 0.0019 (6)
C12 0.0285 (8) 0.0364 (9) 0.0281 (8) −0.0019 (6) 0.0095 (6) 0.0020 (6)
C13 0.0297 (8) 0.0311 (8) 0.0254 (7) 0.0010 (6) 0.0049 (6) −0.0010 (6)
C14 0.0338 (8) 0.0364 (8) 0.0236 (7) −0.0007 (7) 0.0110 (6) 0.0011 (6)
C15 0.0298 (8) 0.0334 (8) 0.0266 (7) −0.0014 (6) 0.0104 (6) 0.0013 (6)
C16 0.0417 (9) 0.0539 (11) 0.0251 (8) −0.0118 (8) 0.0099 (7) −0.0017 (7)
C17 0.0340 (8) 0.0436 (9) 0.0236 (7) −0.0051 (7) 0.0096 (6) 0.0020 (7)
C18 0.0475 (10) 0.0412 (10) 0.0345 (9) −0.0012 (8) 0.0129 (8) −0.0008 (7)
C19 0.0405 (10) 0.0561 (12) 0.0355 (9) 0.0050 (8) 0.0069 (8) 0.0136 (8)
C20 0.0382 (9) 0.0602 (12) 0.0299 (8) −0.0104 (8) 0.0053 (7) −0.0005 (8)
C21 0.0400 (10) 0.0454 (10) 0.0468 (10) −0.0088 (8) 0.0105 (8) −0.0091 (8)
C22 0.0315 (8) 0.0429 (10) 0.0407 (9) −0.0007 (7) 0.0074 (7) 0.0038 (7)
C23 0.0243 (7) 0.0286 (8) 0.0252 (7) −0.0011 (6) 0.0072 (6) −0.0012 (6)
C24 0.0276 (7) 0.0307 (8) 0.0277 (7) 0.0032 (6) 0.0077 (6) 0.0014 (6)
C25 0.0331 (8) 0.0342 (8) 0.0237 (7) 0.0024 (7) 0.0058 (6) 0.0047 (6)
C26 0.0342 (8) 0.0292 (8) 0.0252 (7) −0.0016 (6) 0.0115 (6) −0.0008 (6)
C27 0.0319 (8) 0.0306 (8) 0.0308 (8) 0.0046 (6) 0.0104 (6) 0.0003 (6)
C28 0.0298 (8) 0.0325 (8) 0.0254 (7) 0.0035 (6) 0.0069 (6) 0.0025 (6)
C29 0.0451 (9) 0.0335 (9) 0.0242 (7) −0.0003 (7) 0.0090 (7) 0.0017 (6)
C30 0.0560 (11) 0.0253 (8) 0.0284 (8) −0.0037 (7) 0.0157 (7) 0.0010 (6)
C31 0.0571 (11) 0.0409 (10) 0.0354 (9) 0.0058 (8) 0.0189 (8) 0.0040 (7)
C32 0.0688 (13) 0.0478 (11) 0.0602 (13) 0.0076 (10) 0.0379 (11) 0.0078 (9)
C33 0.0989 (18) 0.0425 (11) 0.0569 (13) −0.0029 (11) 0.0507 (13) −0.0045 (9)
C34 0.1087 (18) 0.0387 (10) 0.0301 (9) −0.0159 (11) 0.0301 (11) −0.0068 (8)
C35 0.0714 (13) 0.0338 (9) 0.0304 (8) −0.0126 (8) 0.0150 (8) −0.0014 (7)

Geometric parameters (Å, °)

O1—C6 1.3307 (16) C17—C22 1.379 (2)
O1—C5 1.4911 (16) C17—C18 1.386 (2)
O2—C13 1.3673 (17) C18—C19 1.389 (2)
O2—C16 1.4410 (17) C18—H18 0.9500
O3—C26 1.3654 (16) C19—C20 1.371 (3)
O3—C29 1.4303 (17) C19—H19 0.9500
N1—C1 1.146 (2) C20—C21 1.372 (2)
N2—C3 1.147 (2) C20—H20 0.9500
N3—C8 1.146 (2) C21—C22 1.382 (2)
C1—C2 1.424 (2) C21—H21 0.9500
C2—C6 1.364 (2) C22—H22 0.9500
C2—C3 1.431 (2) C23—C24 1.385 (2)
C4—C7 1.344 (2) C23—C28 1.395 (2)
C4—C9 1.484 (2) C24—C25 1.3899 (19)
C4—C5 1.512 (2) C24—H24 0.9500
C5—C10 1.5190 (19) C25—C26 1.381 (2)
C5—C23 1.5208 (19) C25—H25 0.9500
C6—C7 1.450 (2) C26—C27 1.392 (2)
C7—C8 1.430 (2) C27—C28 1.3755 (19)
C9—H9A 0.9800 C27—H27 0.9500
C9—H9B 0.9800 C28—H28 0.9500
C9—H9C 0.9800 C29—C30 1.508 (2)
C10—C15 1.3919 (19) C29—H29A 0.9900
C10—C11 1.392 (2) C29—H29B 0.9900
C11—C12 1.379 (2) C30—C35 1.383 (2)
C11—H11 0.9500 C30—C31 1.389 (2)
C12—C13 1.3921 (19) C31—C32 1.393 (2)
C12—H12 0.9500 C31—H31 0.9500
C13—C14 1.390 (2) C32—C33 1.367 (3)
C14—C15 1.381 (2) C32—H32 0.9500
C14—H14 0.9500 C33—C34 1.372 (3)
C15—H15 0.9500 C33—H33 0.9500
C16—C17 1.499 (2) C34—C35 1.394 (3)
C16—H16A 0.9900 C34—H34 0.9500
C16—H16B 0.9900 C35—H35 0.9500
C6—O1—C5 109.92 (11) C17—C18—C19 120.35 (17)
C13—O2—C16 115.48 (11) C17—C18—H18 119.8
C26—O3—C29 118.50 (12) C19—C18—H18 119.8
N1—C1—C2 179.0 (2) C20—C19—C18 120.00 (16)
C6—C2—C1 121.55 (15) C20—C19—H19 120.0
C6—C2—C3 119.70 (14) C18—C19—H19 120.0
C1—C2—C3 118.72 (14) C19—C20—C21 120.21 (16)
N2—C3—C2 179.00 (18) C19—C20—H20 119.9
C7—C4—C9 127.58 (14) C21—C20—H20 119.9
C7—C4—C5 109.18 (13) C20—C21—C22 119.74 (17)
C9—C4—C5 123.24 (13) C20—C21—H21 120.1
O1—C5—C4 102.11 (10) C22—C21—H21 120.1
O1—C5—C10 104.93 (11) C17—C22—C21 121.10 (16)
C4—C5—C10 113.35 (11) C17—C22—H22 119.5
O1—C5—C23 108.11 (11) C21—C22—H22 119.5
C4—C5—C23 111.21 (11) C24—C23—C28 118.56 (13)
C10—C5—C23 115.83 (11) C24—C23—C5 122.02 (12)
O1—C6—C2 119.39 (14) C28—C23—C5 119.36 (12)
O1—C6—C7 109.70 (12) C23—C24—C25 121.15 (13)
C2—C6—C7 130.90 (14) C23—C24—H24 119.4
C4—C7—C8 124.47 (14) C25—C24—H24 119.4
C4—C7—C6 108.95 (13) C26—C25—C24 119.65 (13)
C8—C7—C6 126.57 (13) C26—C25—H25 120.2
N3—C8—C7 176.72 (19) C24—C25—H25 120.2
C4—C9—H9A 109.5 O3—C26—C25 125.61 (13)
C4—C9—H9B 109.5 O3—C26—C27 114.74 (13)
H9A—C9—H9B 109.5 C25—C26—C27 119.65 (13)
C4—C9—H9C 109.5 C28—C27—C26 120.39 (14)
H9A—C9—H9C 109.5 C28—C27—H27 119.8
H9B—C9—H9C 109.5 C26—C27—H27 119.8
C15—C10—C11 118.03 (13) C27—C28—C23 120.59 (13)
C15—C10—C5 119.46 (12) C27—C28—H28 119.7
C11—C10—C5 122.02 (12) C23—C28—H28 119.7
C12—C11—C10 121.38 (13) O3—C29—C30 106.78 (13)
C12—C11—H11 119.3 O3—C29—H29A 110.4
C10—C11—H11 119.3 C30—C29—H29A 110.4
C11—C12—C13 119.81 (13) O3—C29—H29B 110.4
C11—C12—H12 120.1 C30—C29—H29B 110.4
C13—C12—H12 120.1 H29A—C29—H29B 108.6
O2—C13—C14 124.09 (13) C35—C30—C31 118.96 (16)
O2—C13—C12 116.35 (13) C35—C30—C29 120.83 (16)
C14—C13—C12 119.56 (13) C31—C30—C29 120.20 (14)
C15—C14—C13 119.91 (13) C30—C31—C32 120.51 (17)
C15—C14—H14 120.0 C30—C31—H31 119.7
C13—C14—H14 120.0 C32—C31—H31 119.7
C14—C15—C10 121.27 (13) C33—C32—C31 119.8 (2)
C14—C15—H15 119.4 C33—C32—H32 120.1
C10—C15—H15 119.4 C31—C32—H32 120.1
O2—C16—C17 109.94 (12) C32—C33—C34 120.51 (18)
O2—C16—H16A 109.7 C32—C33—H33 119.7
C17—C16—H16A 109.7 C34—C33—H33 119.7
O2—C16—H16B 109.7 C33—C34—C35 120.14 (18)
C17—C16—H16B 109.7 C33—C34—H34 119.9
H16A—C16—H16B 108.2 C35—C34—H34 119.9
C22—C17—C18 118.58 (15) C30—C35—C34 120.09 (19)
C22—C17—C16 120.34 (15) C30—C35—H35 120.0
C18—C17—C16 120.97 (16) C34—C35—H35 120.0
C6—O1—C5—C4 3.74 (14) C13—O2—C16—C17 175.86 (13)
C6—O1—C5—C10 −114.73 (12) O2—C16—C17—C22 93.34 (17)
C6—O1—C5—C23 121.10 (12) O2—C16—C17—C18 −90.50 (18)
C7—C4—C5—O1 −2.30 (14) C22—C17—C18—C19 −0.3 (2)
C9—C4—C5—O1 177.55 (13) C16—C17—C18—C19 −176.51 (14)
C7—C4—C5—C10 110.01 (13) C17—C18—C19—C20 1.1 (2)
C9—C4—C5—C10 −70.14 (17) C18—C19—C20—C21 −1.1 (2)
C7—C4—C5—C23 −117.41 (13) C19—C20—C21—C22 0.2 (3)
C9—C4—C5—C23 62.44 (18) C18—C17—C22—C21 −0.6 (2)
C5—O1—C6—C2 175.49 (12) C16—C17—C22—C21 175.68 (15)
C5—O1—C6—C7 −3.83 (15) C20—C21—C22—C17 0.6 (2)
C1—C2—C6—O1 −177.65 (13) O1—C5—C23—C24 −12.82 (18)
C3—C2—C6—O1 0.1 (2) C4—C5—C23—C24 98.50 (16)
C1—C2—C6—C7 1.5 (3) C10—C5—C23—C24 −130.18 (14)
C3—C2—C6—C7 179.23 (14) O1—C5—C23—C28 170.13 (12)
C9—C4—C7—C8 0.1 (2) C4—C5—C23—C28 −78.55 (16)
C5—C4—C7—C8 179.99 (13) C10—C5—C23—C28 52.77 (18)
C9—C4—C7—C6 −179.62 (14) C28—C23—C24—C25 −0.5 (2)
C5—C4—C7—C6 0.22 (16) C5—C23—C24—C25 −177.53 (13)
O1—C6—C7—C4 2.29 (16) C23—C24—C25—C26 0.2 (2)
C2—C6—C7—C4 −176.92 (15) C29—O3—C26—C25 5.4 (2)
O1—C6—C7—C8 −177.47 (13) C29—O3—C26—C27 −174.32 (13)
C2—C6—C7—C8 3.3 (3) C24—C25—C26—O3 −179.27 (14)
O1—C5—C10—C15 78.88 (15) C24—C25—C26—C27 0.4 (2)
C4—C5—C10—C15 −31.71 (18) O3—C26—C27—C28 178.91 (13)
C23—C5—C10—C15 −162.01 (13) C25—C26—C27—C28 −0.8 (2)
O1—C5—C10—C11 −92.98 (15) C26—C27—C28—C23 0.6 (2)
C4—C5—C10—C11 156.44 (13) C24—C23—C28—C27 0.1 (2)
C23—C5—C10—C11 26.14 (19) C5—C23—C28—C27 177.22 (13)
C15—C10—C11—C12 −0.4 (2) C26—O3—C29—C30 169.49 (12)
C5—C10—C11—C12 171.53 (13) O3—C29—C30—C35 140.52 (14)
C10—C11—C12—C13 −1.5 (2) O3—C29—C30—C31 −40.28 (19)
C16—O2—C13—C14 1.5 (2) C35—C30—C31—C32 −2.2 (2)
C16—O2—C13—C12 −178.30 (14) C29—C30—C31—C32 178.57 (15)
C11—C12—C13—O2 −178.06 (13) C30—C31—C32—C33 1.2 (3)
C11—C12—C13—C14 2.1 (2) C31—C32—C33—C34 0.4 (3)
O2—C13—C14—C15 179.31 (14) C32—C33—C34—C35 −1.0 (3)
C12—C13—C14—C15 −0.9 (2) C31—C30—C35—C34 1.6 (2)
C13—C14—C15—C10 −1.1 (2) C29—C30—C35—C34 −179.18 (15)
C11—C10—C15—C14 1.7 (2) C33—C34—C35—C30 0.0 (3)
C5—C10—C15—C14 −170.48 (13)

Hydrogen-bond geometry (Å, °)

Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 and C23–C28, respectively.
D—H···A D—H H···A D···A D—H···A
C20—H20···Cg1i 0.95 2.85 3.596 (2) 136
C29—-H29A···Cg1ii 0.99 2.59 3.5276 (17) 158
C33—-H33···Cg2iii 0.95 2.77 3.697 (3) 167
C16—-H16B···Cg3iv 0.99 2.97 3.9262 (18) 162

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−3/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2427).

References

  1. Anderson, J. (2009). BSc (Hons) project report. Victoria University of Wellington, New Zealand.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Datta, A. & Pati, S. K. (2003). J. Chem. Phys. 118, 8420–8427.
  5. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–21. New York: Oxford University Press Inc.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619. [DOI] [PubMed]
  8. Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Nikitin, N., Ortin, Y., Muller-Bunz, H., Plamont, M.-A., Jaouen, G., Vessieres, A. & McGlinchey, M. J. (2010). J. Organomet. Chem. 695, 595–608.
  11. Roesky, C. E. O., Czugler, M. & Weber, E. (1997). Z. Kristallogr. New Cryst. Struct. 212, 327–328.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Smith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A, 179, 237–242.
  14. Smith, G. J., Middleton, A., Clarke, D. J., Bhuiyan, M. D. H. & Jay, A. J. (2010). Opt. Mater. 32, 1237–1243.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Teshome, A., Kay, A. J., Woolhouse, A. D., Clays, K., Asselberghs, I. & Smith, G. J. (2009). Opt. Mater. 31, 575–582.
  17. Wang, G.-W., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o3726.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043480/bg2427sup1.cif

e-67-o3046-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043480/bg2427Isup2.hkl

e-67-o3046-Isup2.hkl (336.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043480/bg2427Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES