Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3048. doi: 10.1107/S1600536811043492

Bis(diisopropyl­ammonium) naphthalene-1,5-disulfonate

Yu Jin a,*
PMCID: PMC3247441  PMID: 22220059

Abstract

In the title compound, 2C6H16N+·C10H6O6S2 2−, the cations and anions are associated via N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background on ferroelectric metal–organic frameworks, see: Fu et al. (2009); Wu et al. (2011); Ye et al. (2006); Zhang et al. (2008, 2010).graphic file with name e-67-o3048-scheme1.jpg

Experimental

Crystal data

  • 2C6H16N+·C10H6O6S2 2−

  • M r = 490.66

  • Triclinic, Inline graphic

  • a = 7.9518 (16) Å

  • b = 9.1215 (18) Å

  • c = 9.4319 (19) Å

  • α = 74.33 (3)°

  • β = 88.60 (3)°

  • γ = 74.74 (3)°

  • V = 634.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.489, T max = 1.000

  • 6562 measured reflections

  • 2904 independent reflections

  • 2621 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.129

  • S = 1.12

  • 2904 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043492/mw2025sup1.cif

e-67-o3048-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043492/mw2025Isup2.hkl

e-67-o3048-Isup2.hkl (142.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043492/mw2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.90 2.03 2.887 (2) 159
N1—H1D⋯O3ii 0.90 2.02 2.916 (2) 174
C9—H9A⋯O3 0.96 2.58 3.480 (3) 156
C6—H6A⋯O3ii 0.96 2.58 3.351 (3) 138
C11—H11C⋯O1ii 0.96 2.61 3.439 (4) 144
C11—H11B⋯O2i 0.96 2.47 3.382 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Yu Jin thanks Ordered Matter Science Research Center, Southeast University for its excellent experimental facilities.

supplementary crystallographic information

Comment

Currently, simple molecular-ionic compounds containing organic cations and anions are of considerable interest owing to the tunability of their structural features and their potential to show ferroelectric properties. There exists a series of compounds in which the components can be arranged in a disordered fashion at a relative high temperature and in an ordered fashion at a relative low temperature. (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008;Ye et al., 2006). The transition from the disordered arrangement to the ordered one leads to sharp change in the physical properties of the compound. As part of our search for simple ferroelectric compounds we have investigated the title compound and report its room temperature structure.

The centrosymmetric anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. These interactions tie the cations and anions together in sheets approximately parallel to {100} with zig-zag rows of cations lying between rows of anions (Fig. 2). There are only van der Waals interactions between layers.

Experimental

1,5-naphthalenedisulfonic acid (10 mmol, 2.88 g) was dissolved in 15 ml of distilled water and was stirred for 5 minutes after which diisopropylamine (1.5 ml) was added with stirring. The solution was filtered and left to stand undisturbed whereupon colorless block crystals suitable for X-ray diffraction were obtained in about 68% yield after two days. These were filtered off and washed with distilled water.

Refinement

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93–0.96 Å and N—H = 0.90 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Perspective view of one cation and the anion for (I).Displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing of (I) viewed down the a axis. The N—H···O and C—H···O interactions are shown, respectively as dashed and dotted lines.

Crystal data

2C6H16N+·C10H6O6S22 Z = 1
Mr = 490.66 F(000) = 264
Triclinic, P1 Dx = 1.284 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9518 (16) Å Cell parameters from 3450 reflections
b = 9.1215 (18) Å θ = 3.1–27.6°
c = 9.4319 (19) Å µ = 0.25 mm1
α = 74.33 (3)° T = 293 K
β = 88.60 (3)° Block, colorless
γ = 74.74 (3)° 0.3 × 0.3 × 0.2 mm
V = 634.7 (2) Å3

Data collection

Rigaku Mercury CCD diffractometer 2904 independent reflections
Radiation source: fine-focus sealed tube 2621 reflections with I > 2σ(I)
graphite Rint = 0.038
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −10→10
Tmin = 0.489, Tmax = 1.000 k = −11→11
6562 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.2055P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2904 reflections Δρmax = 0.50 e Å3
150 parameters Δρmin = −0.45 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.85 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0351 (2) 0.2895 (2) 0.7281 (2) 0.0369 (4)
H1B −0.0197 0.2081 0.8148 0.044*
C2 0.1044 (2) 0.34189 (18) 0.66995 (17) 0.0283 (3)
C3 0.08495 (18) 0.46559 (17) 0.53574 (17) 0.0259 (3)
C4 0.2268 (2) 0.5223 (2) 0.47013 (19) 0.0337 (4)
H4A 0.3383 0.4773 0.5148 0.040*
C5 0.2021 (2) 0.6413 (2) 0.3430 (2) 0.0406 (4)
H5A 0.2965 0.6774 0.3026 0.049*
C6 0.1682 (3) 0.0620 (3) 0.2747 (3) 0.0628 (7)
H6A 0.2490 −0.0343 0.3287 0.094*
H6B 0.1388 0.0527 0.1800 0.094*
H6C 0.0643 0.0818 0.3284 0.094*
C7 0.2506 (2) 0.1971 (2) 0.2543 (2) 0.0429 (4)
H7A 0.2742 0.2097 0.3512 0.052*
C8 0.1320 (3) 0.3506 (3) 0.1613 (3) 0.0607 (6)
H8A 0.1903 0.4329 0.1461 0.091*
H8B 0.0266 0.3784 0.2112 0.091*
H8C 0.1040 0.3377 0.0677 0.091*
C9 0.6308 (4) 0.2023 (4) 0.3419 (3) 0.0714 (8)
H9A 0.5432 0.2048 0.4137 0.107*
H9B 0.7008 0.2709 0.3505 0.107*
H9C 0.7036 0.0964 0.3585 0.107*
C10 0.5439 (3) 0.2570 (2) 0.1895 (2) 0.0437 (5)
H10A 0.4767 0.3676 0.1709 0.052*
C11 0.6760 (3) 0.2441 (4) 0.0729 (3) 0.0661 (7)
H11A 0.7547 0.3062 0.0787 0.099*
H11B 0.6168 0.2822 −0.0227 0.099*
H11C 0.7404 0.1356 0.0886 0.099*
N1 0.42071 (17) 0.15825 (17) 0.18060 (16) 0.0335 (3)
H1C 0.3967 0.1694 0.0849 0.040*
H1D 0.4761 0.0560 0.2216 0.040*
O1 0.28340 (19) 0.14639 (18) 0.90458 (15) 0.0519 (4)
O2 0.3674 (2) 0.38559 (19) 0.79367 (18) 0.0585 (4)
O3 0.42442 (18) 0.17516 (17) 0.67405 (16) 0.0517 (4)
S1 0.31154 (5) 0.25661 (5) 0.76799 (5) 0.0357 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0390 (9) 0.0366 (9) 0.0327 (9) −0.0133 (7) 0.0020 (7) −0.0025 (7)
C2 0.0264 (7) 0.0285 (7) 0.0287 (8) −0.0033 (6) −0.0008 (6) −0.0096 (6)
C3 0.0231 (7) 0.0279 (7) 0.0276 (7) −0.0059 (6) −0.0001 (6) −0.0101 (6)
C4 0.0227 (7) 0.0399 (9) 0.0384 (9) −0.0087 (6) −0.0004 (6) −0.0101 (7)
C5 0.0328 (9) 0.0468 (10) 0.0426 (10) −0.0186 (8) 0.0049 (7) −0.0054 (8)
C6 0.0394 (11) 0.0591 (14) 0.0805 (17) −0.0143 (10) 0.0068 (11) −0.0030 (12)
C7 0.0350 (9) 0.0497 (11) 0.0442 (10) −0.0058 (8) 0.0055 (7) −0.0187 (8)
C8 0.0441 (12) 0.0442 (11) 0.0883 (18) 0.0052 (9) 0.0023 (11) −0.0255 (12)
C9 0.0689 (16) 0.118 (2) 0.0499 (13) −0.0474 (16) 0.0010 (11) −0.0383 (14)
C10 0.0414 (10) 0.0422 (10) 0.0495 (11) −0.0152 (8) −0.0024 (8) −0.0114 (8)
C11 0.0519 (13) 0.105 (2) 0.0431 (12) −0.0390 (13) 0.0018 (10) −0.0054 (12)
N1 0.0291 (7) 0.0354 (7) 0.0345 (7) −0.0038 (6) −0.0022 (5) −0.0115 (6)
O1 0.0527 (9) 0.0584 (9) 0.0318 (7) −0.0073 (7) −0.0081 (6) 0.0023 (6)
O2 0.0545 (9) 0.0595 (9) 0.0644 (10) −0.0164 (7) −0.0242 (7) −0.0182 (8)
O3 0.0412 (8) 0.0515 (8) 0.0456 (8) 0.0119 (6) 0.0027 (6) −0.0090 (6)
S1 0.0306 (3) 0.0390 (3) 0.0310 (3) −0.00070 (17) −0.00660 (16) −0.00666 (18)

Geometric parameters (Å, °)

C1—C2 1.366 (2) C8—H8A 0.9600
C1—C5i 1.409 (3) C8—H8B 0.9600
C1—H1B 0.9300 C8—H8C 0.9600
C2—C3 1.430 (2) C9—C10 1.507 (3)
C2—S1 1.7844 (17) C9—H9A 0.9600
C3—C4 1.422 (2) C9—H9B 0.9600
C3—C3i 1.430 (3) C9—H9C 0.9600
C4—C5 1.360 (3) C10—C11 1.508 (3)
C4—H4A 0.9300 C10—N1 1.513 (2)
C5—C1i 1.409 (3) C10—H10A 0.9800
C5—H5A 0.9300 C11—H11A 0.9600
C6—C7 1.508 (3) C11—H11B 0.9600
C6—H6A 0.9600 C11—H11C 0.9600
C6—H6B 0.9600 N1—H1C 0.9000
C6—H6C 0.9600 N1—H1D 0.9000
C7—N1 1.508 (2) O1—S1 1.4578 (15)
C7—C8 1.517 (3) O2—S1 1.4401 (16)
C7—H7A 0.9800 O3—S1 1.4521 (15)
C2—C1—C5i 120.17 (16) H8B—C8—H8C 109.5
C2—C1—H1B 119.9 C10—C9—H9A 109.5
C5i—C1—H1B 119.9 C10—C9—H9B 109.5
C1—C2—C3 121.06 (15) H9A—C9—H9B 109.5
C1—C2—S1 118.57 (13) C10—C9—H9C 109.5
C3—C2—S1 120.34 (12) H9A—C9—H9C 109.5
C4—C3—C3i 118.72 (18) H9B—C9—H9C 109.5
C4—C3—C2 123.01 (14) C9—C10—C11 111.56 (19)
C3i—C3—C2 118.28 (17) C9—C10—N1 109.39 (17)
C5—C4—C3 121.05 (15) C11—C10—N1 109.33 (17)
C5—C4—H4A 119.5 C9—C10—H10A 108.8
C3—C4—H4A 119.5 C11—C10—H10A 108.8
C4—C5—C1i 120.72 (16) N1—C10—H10A 108.8
C4—C5—H5A 119.6 C10—C11—H11A 109.5
C1i—C5—H5A 119.6 C10—C11—H11B 109.5
C7—C6—H6A 109.5 H11A—C11—H11B 109.5
C7—C6—H6B 109.5 C10—C11—H11C 109.5
H6A—C6—H6B 109.5 H11A—C11—H11C 109.5
C7—C6—H6C 109.5 H11B—C11—H11C 109.5
H6A—C6—H6C 109.5 C7—N1—C10 115.64 (14)
H6B—C6—H6C 109.5 C7—N1—H1C 108.4
N1—C7—C6 108.75 (16) C10—N1—H1C 108.4
N1—C7—C8 109.60 (17) C7—N1—H1D 108.4
C6—C7—C8 111.47 (19) C10—N1—H1D 108.4
N1—C7—H7A 109.0 H1C—N1—H1D 107.4
C6—C7—H7A 109.0 O2—S1—O3 113.49 (10)
C8—C7—H7A 109.0 O2—S1—O1 112.42 (10)
C7—C8—H8A 109.5 O3—S1—O1 111.45 (9)
C7—C8—H8B 109.5 O2—S1—C2 106.31 (8)
H8A—C8—H8B 109.5 O3—S1—C2 106.05 (8)
C7—C8—H8C 109.5 O1—S1—C2 106.53 (8)
H8A—C8—H8C 109.5

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O1ii 0.90 2.03 2.887 (2) 159
N1—H1D···O3iii 0.90 2.02 2.916 (2) 174
C9—H9A···O3 0.96 2.58 3.480 (3) 156
C6—H6A···O3iii 0.96 2.58 3.351 (3) 138
C11—H11C···O1iii 0.96 2.61 3.439 (4) 144
C11—H11B···O2ii 0.96 2.47 3.382 (3) 158

Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2025).

References

  1. Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.
  5. Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. [DOI] [PubMed]
  6. Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. [DOI] [PubMed]
  7. Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043492/mw2025sup1.cif

e-67-o3048-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043492/mw2025Isup2.hkl

e-67-o3048-Isup2.hkl (142.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043492/mw2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES