Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3054. doi: 10.1107/S1600536811043297

(RS)-2-Oxo-4-(1-phenyl­ethyl­amino)-1,2-dihydro­quinoline-3-carb­oxy­lic acid

Svitlana V Shishkina a,*, Igor V Ukrainets b, Elena V Mospanova b
PMCID: PMC3247446  PMID: 22220064

Abstract

The mol­ecular structure of the title compound, C18H16N2O3, does not differ in the crystals of the racemic mixture, (I), and the pure enantiomer, (II). In their crystal structures, inversion dimers occur in (I) via N—H⋯O hydrogen bonds and infinite chains in (II) also via N—H⋯O hydrogen bonds.

Related literature

For the S and R enanti­omers, see: Ukrainets et al. (2010). For bond lengths in related structures, see: Bürgi & Dunitz (1994).graphic file with name e-67-o3054-scheme1.jpg

Experimental

Crystal data

  • C18H16N2O3

  • M r = 308.33

  • Monoclinic, Inline graphic

  • a = 14.612 (2) Å

  • b = 5.9750 (6) Å

  • c = 18.014 (2) Å

  • β = 110.814 (14)°

  • V = 1470.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur 3 diffractometer

  • 10943 measured reflections

  • 2541 independent reflections

  • 1174 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.033

  • S = 0.66

  • 2541 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2005); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043297/jj2104sup1.cif

e-67-o3054-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043297/jj2104Isup2.hkl

e-67-o3054-Isup2.hkl (124.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043297/jj2104Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 1.038 (17) 1.794 (17) 2.8291 (15) 174.5 (14)
N2—H2N⋯O2 0.926 (14) 1.738 (14) 2.5849 (17) 150.4 (12)
O3—H3O⋯O1 0.943 (19) 1.59 (2) 2.4712 (15) 154.1 (18)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

In the title compound, (I), the racemate of 2-oxo-4-(1-phenylethylamino)-1,2- dihydroquinoline-3-carboxylic acid reveals high analgesic activity. Compared to its pure S and R enantiomers, they are completely inactive (Ukrainets et al., 2010). In this paper we compare the molecular and crystal structure of the racemate (I) with a previously studied structure of the pure enantiomer (II). In the title compound (Fig. 1) the formation of two strong N2—H···O2 and O3—H···O1 intramolecular hydrogen bonds (Table 1) contributes to the coplanarity of the heterocycle, carboxyl, carbonyl groups and N2 atom all to be within 0.02 Å. As a result a significant redistribution of the electron density occurs in the quinolone fragment: the O3—C10 and C8—C9 bonds are shortened (Table 1) as compared with their mean values of 1.362 Å and 1.455 Å (Bürgi & Dunitz, 1994). The O1—C9, O2—C10, and C7—C8 bonds are elongated (mean values are 1.210 Å for a Csp2= O bond and 1.418 Å for a Csp2= Csp2 bond). The substituent at the amino group has a sp- conformation. The C6—C7 bond (C11/N2/C7/C6 torsion angle = -1.6 (2)%A) is twisted slghtly allowing the methyl group to be ap- oriented relative to the C7—N2 bond (C7/N2/C11/C12 torsion angle = 171.3 (1)%A). The phenyl substituent is in a -sc-conformation relative to the C7—N2 bond and is twisted toward the N2—C11 bond (C7/N2/C11/C13 and N2/C11/C13/C18 torsion angles = -67.3 (2) %A and 36.3 (2) %A, respectively). The crystal structure of (I), therefore, differs significantly from that of (II). In the pure enantiomer (II) infinite chains (Fig. 2) result from the formation of an N1—H···O2 intermolecular hydrogen bond (Ukrainets et al., 2010). In the racemte, (I), centrosymmetric dimers (Fig. 3) are formed by a N1—H1N···O1 intermolecular hydrogen bond (Table 2). This allows for Cg1—Cg1 π—π stacking interactions to be observed [centroid–centroid distance = 3.894 (1)Åi; i = 1-x, 2-y, -z; Cg1 = N1/C1/C6-C9].

Experimental

2-Oxo-4-(1-phenylethylamino)-1,2-dihydroquinoline-3-carboxylic acid was synthesized using the published method (Ukrainets et al., 2010). Yield 75%. M.p. 225–227° C.

Refinement

H1N, H2N and H3O were located from by a Fourier map and refined isotropically. All of the remaining hydrogen atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing of the pure enantiomer (II) in crystal phase. Hydrogen bonds are shown by dashed lines.

Fig. 3.

Fig. 3.

The packing of the title racemate (I) in crystal phase. Hydrogen bonds are shown by dashed lines.

Crystal data

C18H16N2O3 F(000) = 648
Mr = 308.33 Dx = 1.393 Mg m3
Monoclinic, P21/n Melting point = 498–500 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 14.612 (2) Å Cell parameters from 1534 reflections
b = 5.9750 (6) Å θ = 3.0–32.0°
c = 18.014 (2) Å µ = 0.10 mm1
β = 110.814 (14)° T = 293 K
V = 1470.0 (3) Å3 Needle, colourless
Z = 4 0.30 × 0.10 × 0.05 mm

Data collection

Oxford Diffraction Xcalibur 3 diffractometer 1174 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.068
graphite θmax = 25.0°, θmin = 3.0°
Detector resolution: 16.1827 pixels mm-1 h = −17→17
ω scans k = −7→7
10943 measured reflections l = −20→21
2541 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: difference Fourier map
wR(F2) = 0.033 H atoms treated by a mixture of independent and constrained refinement
S = 0.66 w = 1/[σ2(Fo2) + (0.0067P)2] where P = (Fo2 + 2Fc2)/3
2541 reflections (Δ/σ)max = 0.001
221 parameters Δρmax = 0.10 e Å3
0 restraints Δρmin = −0.10 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.54636 (9) 0.7456 (2) −0.03766 (8) 0.0393 (3)
H1N 0.4891 (13) 0.631 (2) −0.0545 (9) 0.116 (7)*
N2 0.77647 (10) 1.19200 (19) 0.02901 (9) 0.0456 (4)
H2N 0.8164 (9) 1.153 (2) 0.0800 (9) 0.058 (5)*
O1 0.61318 (7) 0.55549 (16) 0.07595 (6) 0.0498 (3)
O2 0.84379 (7) 0.97876 (16) 0.16236 (6) 0.0615 (3)
O3 0.76182 (8) 0.6926 (2) 0.18244 (7) 0.0613 (4)
H3O 0.7056 (15) 0.610 (3) 0.1530 (12) 0.138 (9)*
C1 0.54064 (10) 0.9229 (2) −0.08811 (8) 0.0350 (4)
C2 0.45947 (10) 0.9355 (2) −0.15744 (9) 0.0447 (4)
H2 0.4131 0.8214 −0.1703 0.054*
C3 0.44735 (11) 1.1146 (2) −0.20685 (9) 0.0485 (4)
H3 0.3921 1.1251 −0.2527 0.058*
C4 0.51788 (11) 1.2804 (2) −0.18817 (9) 0.0490 (4)
H4 0.5097 1.4034 −0.2216 0.059*
C5 0.59936 (10) 1.2656 (2) −0.12129 (9) 0.0448 (4)
H5 0.6463 1.3781 −0.1104 0.054*
C6 0.61435 (10) 1.0856 (2) −0.06863 (8) 0.0340 (4)
C7 0.69759 (10) 1.0588 (2) 0.00556 (8) 0.0344 (4)
C8 0.69570 (10) 0.8825 (2) 0.05766 (9) 0.0351 (4)
C9 0.61762 (11) 0.7222 (2) 0.03378 (10) 0.0378 (4)
C10 0.77197 (12) 0.8569 (3) 0.13643 (10) 0.0472 (4)
C11 0.80766 (10) 1.3854 (2) −0.00571 (9) 0.0424 (4)
H11 0.7558 1.4987 −0.0191 0.051*
C12 0.89830 (10) 1.4790 (2) 0.05891 (8) 0.0595 (5)
H12C 0.9503 1.3712 0.0714 0.089*
H12B 0.8833 1.5102 0.1056 0.089*
H12A 0.9183 1.6145 0.0404 0.089*
C13 0.83092 (10) 1.3343 (2) −0.07889 (9) 0.0379 (4)
C14 0.81570 (10) 1.4954 (2) −0.13665 (10) 0.0498 (4)
H14 0.7851 1.6288 −0.1324 0.060*
C15 0.84497 (12) 1.4625 (3) −0.20070 (10) 0.0609 (5)
H15 0.8341 1.5733 −0.2392 0.073*
C16 0.88995 (12) 1.2670 (3) −0.20764 (11) 0.0664 (5)
H16 0.9103 1.2443 −0.2504 0.080*
C17 0.90463 (12) 1.1050 (3) −0.15065 (12) 0.0642 (5)
H17 0.9351 0.9718 −0.1552 0.077*
C18 0.87513 (11) 1.1362 (2) −0.08708 (10) 0.0513 (4)
H18 0.8849 1.0236 −0.0494 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0343 (8) 0.0428 (8) 0.0359 (10) −0.0088 (7) 0.0063 (7) 0.0011 (6)
N2 0.0365 (9) 0.0539 (9) 0.0423 (11) −0.0131 (7) 0.0091 (8) 0.0010 (7)
O1 0.0443 (7) 0.0459 (6) 0.0516 (8) −0.0080 (5) 0.0075 (6) 0.0116 (6)
O2 0.0469 (8) 0.0690 (7) 0.0517 (8) −0.0163 (6) −0.0031 (6) 0.0055 (6)
O3 0.0458 (8) 0.0709 (8) 0.0538 (10) −0.0083 (7) 0.0011 (7) 0.0206 (7)
C1 0.0342 (10) 0.0403 (10) 0.0311 (11) −0.0008 (8) 0.0122 (8) −0.0026 (8)
C2 0.0367 (11) 0.0486 (10) 0.0443 (12) −0.0072 (7) 0.0090 (9) −0.0016 (8)
C3 0.0385 (10) 0.0665 (11) 0.0356 (12) −0.0035 (9) 0.0071 (8) 0.0007 (9)
C4 0.0402 (10) 0.0580 (11) 0.0468 (13) 0.0002 (9) 0.0133 (9) 0.0142 (8)
C5 0.0330 (10) 0.0503 (10) 0.0497 (13) −0.0089 (8) 0.0132 (9) 0.0036 (8)
C6 0.0306 (9) 0.0414 (10) 0.0305 (11) −0.0022 (8) 0.0113 (8) −0.0044 (7)
C7 0.0276 (10) 0.0399 (9) 0.0373 (11) −0.0021 (8) 0.0135 (8) −0.0065 (8)
C8 0.0259 (9) 0.0428 (10) 0.0334 (11) −0.0028 (7) 0.0066 (8) −0.0019 (8)
C9 0.0356 (10) 0.0367 (10) 0.0415 (12) 0.0008 (8) 0.0143 (9) −0.0011 (8)
C10 0.0426 (12) 0.0479 (12) 0.0490 (13) −0.0006 (9) 0.0137 (10) 0.0017 (9)
C11 0.0357 (10) 0.0423 (9) 0.0499 (12) −0.0100 (8) 0.0163 (9) −0.0049 (8)
C12 0.0563 (11) 0.0621 (11) 0.0569 (13) −0.0238 (9) 0.0161 (9) −0.0139 (9)
C13 0.0334 (10) 0.0371 (10) 0.0440 (12) −0.0090 (7) 0.0145 (8) −0.0046 (8)
C14 0.0458 (11) 0.0454 (11) 0.0590 (13) −0.0042 (7) 0.0195 (10) −0.0003 (9)
C15 0.0609 (13) 0.0689 (13) 0.0548 (14) −0.0091 (10) 0.0230 (10) 0.0084 (10)
C16 0.0680 (14) 0.0798 (15) 0.0593 (14) −0.0109 (11) 0.0323 (11) −0.0136 (11)
C17 0.0672 (13) 0.0517 (11) 0.0828 (16) 0.0006 (9) 0.0377 (12) −0.0127 (11)
C18 0.0563 (12) 0.0433 (11) 0.0597 (13) −0.0006 (9) 0.0273 (10) 0.0019 (9)

Geometric parameters (Å, °)

N1—C9 1.3444 (17) C7—C8 1.4177 (16)
N1—C1 1.3788 (16) C8—C9 1.4334 (17)
N1—H1N 1.038 (17) C8—C10 1.4679 (18)
N2—C7 1.3395 (15) C11—C13 1.5051 (17)
N2—C11 1.4619 (16) C11—C12 1.5251 (16)
N2—H2N 0.926 (14) C11—H11 0.9800
O1—C9 1.2684 (15) C12—H12C 0.9600
O2—C10 1.2252 (15) C12—H12B 0.9600
O3—C10 1.3268 (17) C12—H12A 0.9600
O3—H3O 0.943 (19) C13—C14 1.3760 (16)
C1—C2 1.3854 (16) C13—C18 1.3812 (16)
C1—C6 1.4000 (15) C14—C15 1.3796 (19)
C2—C3 1.3626 (16) C14—H14 0.9300
C2—H2 0.9300 C15—C16 1.3675 (19)
C3—C4 1.3825 (17) C15—H15 0.9300
C3—H3 0.9300 C16—C17 1.3712 (19)
C4—C5 1.3629 (19) C16—H16 0.9300
C4—H4 0.9300 C17—C18 1.3721 (19)
C5—C6 1.3986 (17) C17—H17 0.9300
C5—H5 0.9300 C18—H18 0.9300
C6—C7 1.4614 (17)
C9—N1—C1 123.76 (14) O2—C10—O3 118.18 (16)
C9—N1—H1N 118.7 (9) O2—C10—C8 124.05 (15)
C1—N1—H1N 117.3 (8) O3—C10—C8 117.77 (14)
C7—N2—C11 134.34 (14) N2—C11—C13 114.59 (12)
C7—N2—H2N 109.4 (8) N2—C11—C12 106.35 (12)
C11—N2—H2N 116.2 (8) C13—C11—C12 109.74 (12)
C10—O3—H3O 107.6 (12) N2—C11—H11 108.7
N1—C1—C2 117.90 (14) C13—C11—H11 108.7
N1—C1—C6 120.48 (14) C12—C11—H11 108.7
C2—C1—C6 121.61 (14) C11—C12—H12C 109.5
C3—C2—C1 120.16 (14) C11—C12—H12B 109.5
C3—C2—H2 119.9 H12C—C12—H12B 109.5
C1—C2—H2 119.9 C11—C12—H12A 109.5
C2—C3—C4 119.44 (15) H12C—C12—H12A 109.5
C2—C3—H3 120.3 H12B—C12—H12A 109.5
C4—C3—H3 120.3 C14—C13—C18 118.34 (14)
C5—C4—C3 120.65 (14) C14—C13—C11 119.62 (14)
C5—C4—H4 119.7 C18—C13—C11 121.81 (14)
C3—C4—H4 119.7 C13—C14—C15 121.19 (15)
C4—C5—C6 121.79 (14) C13—C14—H14 119.4
C4—C5—H5 119.1 C15—C14—H14 119.4
C6—C5—H5 119.1 C16—C15—C14 120.00 (16)
C5—C6—C1 116.28 (13) C16—C15—H15 120.0
C5—C6—C7 125.69 (14) C14—C15—H15 120.0
C1—C6—C7 117.98 (13) C15—C16—C17 119.13 (17)
N2—C7—C8 116.72 (13) C15—C16—H16 120.4
N2—C7—C6 124.51 (14) C17—C16—H16 120.4
C8—C7—C6 118.77 (13) C16—C17—C18 121.14 (16)
C7—C8—C9 119.89 (14) C16—C17—H17 119.4
C7—C8—C10 122.05 (14) C18—C17—H17 119.4
C9—C8—C10 118.06 (14) C17—C18—C13 120.19 (14)
O1—C9—N1 117.89 (13) C17—C18—H18 119.9
O1—C9—C8 123.34 (15) C13—C18—H18 119.9
N1—C9—C8 118.75 (15)
C9—N1—C1—C2 −175.26 (14) C1—N1—C9—C8 −3.8 (2)
C9—N1—C1—C6 3.8 (2) C7—C8—C9—O1 177.18 (13)
N1—C1—C2—C3 175.92 (13) C10—C8—C9—O1 −2.7 (2)
C6—C1—C2—C3 −3.2 (2) C7—C8—C9—N1 −1.2 (2)
C1—C2—C3—C4 1.6 (2) C10—C8—C9—N1 178.91 (13)
C2—C3—C4—C5 0.4 (2) C7—C8—C10—O2 −2.3 (2)
C3—C4—C5—C6 −0.9 (2) C9—C8—C10—O2 177.57 (14)
C4—C5—C6—C1 −0.5 (2) C7—C8—C10—O3 177.13 (13)
C4—C5—C6—C7 −177.97 (14) C9—C8—C10—O3 −3.0 (2)
N1—C1—C6—C5 −176.49 (13) C7—N2—C11—C13 −67.3 (2)
C2—C1—C6—C5 2.57 (19) C7—N2—C11—C12 171.26 (14)
N1—C1—C6—C7 1.15 (19) N2—C11—C13—C14 149.27 (13)
C2—C1—C6—C7 −179.79 (13) C12—C11—C13—C14 −91.19 (15)
C11—N2—C7—C8 179.24 (15) N2—C11—C13—C18 −36.34 (18)
C11—N2—C7—C6 −1.6 (2) C12—C11—C13—C18 83.21 (15)
C5—C6—C7—N2 −7.6 (2) C18—C13—C14—C15 −1.0 (2)
C1—C6—C7—N2 175.04 (13) C11—C13—C14—C15 173.62 (14)
C5—C6—C7—C8 171.59 (13) C13—C14—C15—C16 0.0 (2)
C1—C6—C7—C8 −5.81 (18) C14—C15—C16—C17 0.5 (2)
N2—C7—C8—C9 −174.91 (12) C15—C16—C17—C18 −0.1 (3)
C6—C7—C8—C9 5.87 (19) C16—C17—C18—C13 −0.8 (3)
N2—C7—C8—C10 4.98 (19) C14—C13—C18—C17 1.4 (2)
C6—C7—C8—C10 −174.23 (13) C11—C13—C18—C17 −173.10 (15)
C1—N1—C9—O1 177.72 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 1.038 (17) 1.794 (17) 2.8291 (15) 174.5 (14)
N2—H2N···O2 0.926 (14) 1.738 (14) 2.5849 (17) 150.4 (12)
O3—H3O···O1 0.943 (19) 1.59 (2) 2.4712 (15) 154.1 (18)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2104).

References

  1. Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.
  2. Oxford Diffraction (2005). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Ukrainets, I. V., Mospanova, E. V., Davidenko, A. A. & Shishkina, S. V. (2010). Khim. Geterotsikl. Soedin. pp. 1690–1701.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043297/jj2104sup1.cif

e-67-o3054-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043297/jj2104Isup2.hkl

e-67-o3054-Isup2.hkl (124.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043297/jj2104Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES