Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3057. doi: 10.1107/S1600536811043212

tert-Butyl (2S)-2-{3-[(R)-bis­(tert-but­oxy­carbon­yl)amino]-2-oxopiperidin-1-yl}-3-methyl­butano­ate1

Michael J Kangas a, Frank R Fronczek a,*, Steven F Watkins a
PMCID: PMC3247449  PMID: 22220067

Abstract

The title compound, C24H42N2O7, is a chiral lactam-constrained amino acid with a six-membered ring backbone and isopropyl and tert-butyl ester side chains. The conformation of the six-membered ring can be described as a half chair, with two CH2 C atoms lying 0.443 (1) and −0.310 (1) Å out of the best plane of the other four atoms (mean deviation = 0.042 Å). Both N atoms are sp 2 hybridized, lying 0.0413 (9) and 0.067 (1) Å out of the planes defined by the three C atoms bonded to them. The absolute configuration was determined, based on resonant scattering of light atoms in Cu Kα radiation.

Related literature

For synthesis and chemical inter­est, see: Oguz (2003); Oguz et al. (2001). For a similar structure, see: Valle et al. (1989). For absolute configuration parameters, see: Hooft et al. (2008).graphic file with name e-67-o3057-scheme1.jpg

Experimental

Crystal data

  • C24H42N2O7

  • M r = 470.6

  • Monoclinic, Inline graphic

  • a = 27.282 (3) Å

  • b = 9.4315 (10) Å

  • c = 11.5884 (10) Å

  • β = 110.729 (1)°

  • V = 2788.7 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 86 K

  • 0.35 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.800, T max = 0.878

  • 10823 measured reflections

  • 4844 independent reflections

  • 4782 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.071

  • S = 1.01

  • 4844 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983), 2174 Friedel pairs

  • Flack parameter: −0.02 (10)

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043212/pv2462sup1.cif

e-67-o3057-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043212/pv2462Isup2.hkl

e-67-o3057-Isup2.hkl (232.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Dr Umut Oguz for providing the crystalline sample.

supplementary crystallographic information

Comment

Title compound is a conformationally constrained amino acid analog which was designed as part of a study to understand the factors promoting β-sheet formation in brain-degenerative diseases such as Alzheimer's disease, Creutzfeldt-Jacob disease and bovine spongiform encephalopathy (Oguz et al., 2001).

In the title molecule (Fig. 1), the central six-membered ring adopts a conformation close to the C2 half chair, with the diad axis bisecting the N1–C1 and C3–C4 bonds. Atoms C1, C2, C5 and N1 are coplanar to within a mean deviation 0.042 Å (maximum 0.0588 (10) Å for N1), the other two atoms lying alternately above and below this plane, C3 by -0.310 (1) and C4 by 0.443 (1) Å. The C5—N1—C1—C2 torsion angle, which would be zero for an ideal half chair, is -13.36 (18)°. This conformation is similar to that seen in a similar lactam-restricted analog of Boc-L-Pro-L-Leu-Gly-NH2, which has torsion angle somewhat closer to zero, 5.6 (11)° and smaller mean deviation for these four atoms, 0.014 Å (Valle et al., 1989).

Both N atoms are sp2 hybrids, with N1 lying only 0.067 (1) Å from the plane defined by C1, C5 and C16, and N2 lying 0.0413 (9) Å from the plane defined by C2, C6 and C11.

The absolute configuration based on the Flack (1983) parameter x = -0.02 (10), the Hooft parameter y = -0.05 (5), and the Hooft P2(true) value of 1.000 (Hooft et al., 2008) agrees with that of the starting materials.

Experimental

The synthesis of the title compound is detailed by Oguz (2003), who prepared a suitable single-crystal by recrystallization from hexanes.

Refinement

Hydrogen atoms were located from difference maps and included in the refinement in riding mode with C—H distances = 0.98 - 1.00 Å and Uiso(H) = 1.5 Ueq(methyl C) or 1.2 Ueq(non-methyl C). Refinement of the Flack (1983) parameter was used to determine the absolute configurations of the two asymmetric centers in the molecule.

Figures

Fig. 1.

Fig. 1.

View of the title molecule (50% probability displacement ellipsoids); H atoms are not shown for clarity.

Crystal data

C24H42N2O7 F(000) = 1024
Mr = 470.6 Dx = 1.121 Mg m3
Monoclinic, C2 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: C 2y Cell parameters from 8306 reflections
a = 27.282 (3) Å θ = 3.5–67.8°
b = 9.4315 (10) Å µ = 0.67 mm1
c = 11.5884 (10) Å T = 86 K
β = 110.729 (1)° Fragment, colourless
V = 2788.7 (5) Å3 0.35 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4844 independent reflections
Radiation source: fine-focus sealed tube 4782 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 68.2°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −32→32
Tmin = 0.800, Tmax = 0.878 k = −10→11
10823 measured reflections l = −13→13

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.6036P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071 (Δ/σ)max = 0.001
S = 1.01 Δρmax = 0.19 e Å3
4844 reflections Δρmin = −0.12 e Å3
310 parameters Extinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.00066 (8)
0 constraints Absolute structure: Flack (1983), 2174 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29466 (4) 0.36747 (13) 0.72598 (11) 0.0195 (2)
C2 0.24099 (4) 0.41656 (13) 0.63587 (11) 0.0194 (2)
H2 0.2438 0.5214 0.6267 0.023*
C3 0.22473 (5) 0.35489 (14) 0.50640 (11) 0.0224 (3)
H3A 0.194 0.4069 0.4504 0.027*
H3B 0.2149 0.254 0.5075 0.027*
C4 0.27044 (5) 0.36775 (14) 0.46077 (11) 0.0225 (3)
H4A 0.26 0.3321 0.3751 0.027*
H4B 0.2809 0.4684 0.4616 0.027*
C5 0.31600 (5) 0.28143 (14) 0.54486 (11) 0.0221 (3)
H5A 0.307 0.1794 0.5335 0.026*
H5B 0.3471 0.2973 0.5212 0.026*
C6 0.20105 (4) 0.26219 (13) 0.74681 (11) 0.0191 (2)
C7 0.18475 (5) 0.14657 (13) 0.91793 (11) 0.0236 (3)
C8 0.24179 (5) 0.11115 (18) 0.98719 (13) 0.0343 (3)
H8A 0.258 0.0784 0.9288 0.051*
H8B 0.2442 0.0363 1.0476 0.051*
H8C 0.2601 0.1959 1.03 0.051*
C9 0.15900 (7) 0.20383 (18) 1.00423 (15) 0.0412 (4)
H9A 0.1789 0.2857 1.049 0.062*
H9B 0.1584 0.1299 1.0632 0.062*
H9C 0.123 0.233 0.9564 0.062*
C10 0.15454 (6) 0.02203 (16) 0.84575 (14) 0.0359 (3)
H10A 0.1191 0.0526 0.795 0.054*
H10B 0.1524 −0.0522 0.9029 0.054*
H10C 0.1725 −0.0153 0.7923 0.054*
C11 0.16978 (5) 0.51181 (13) 0.69474 (10) 0.0183 (2)
C12 0.08595 (4) 0.57415 (14) 0.71249 (11) 0.0208 (2)
C13 0.10986 (6) 0.63856 (16) 0.83951 (13) 0.0310 (3)
H13A 0.1201 0.5629 0.9014 0.046*
H13B 0.0841 0.7004 0.8556 0.046*
H13C 0.1408 0.6942 0.8439 0.046*
C14 0.03931 (5) 0.48195 (15) 0.70301 (14) 0.0295 (3)
H14A 0.0269 0.4342 0.6227 0.044*
H14B 0.0112 0.5411 0.7112 0.044*
H14C 0.0497 0.4109 0.769 0.044*
C15 0.07098 (5) 0.68538 (16) 0.61068 (13) 0.0294 (3)
H15A 0.1005 0.7501 0.6232 0.044*
H15B 0.0406 0.7391 0.6129 0.044*
H15C 0.0622 0.6385 0.5304 0.044*
C16 0.38183 (5) 0.27894 (15) 0.75821 (11) 0.0241 (3)
H16 0.3863 0.3166 0.842 0.029*
C17 0.39093 (5) 0.11852 (15) 0.77060 (11) 0.0243 (3)
H17 0.3935 0.0812 0.6922 0.029*
C18 0.44260 (5) 0.08832 (18) 0.87695 (12) 0.0339 (3)
H18A 0.4404 0.1243 0.9543 0.051*
H18B 0.4715 0.1355 0.8606 0.051*
H18C 0.4489 −0.0142 0.8838 0.051*
C19 0.34592 (5) 0.04375 (15) 0.79477 (12) 0.0273 (3)
H19A 0.3531 −0.0582 0.8044 0.041*
H19B 0.3132 0.06 0.7251 0.041*
H19C 0.3425 0.0815 0.8704 0.041*
C20 0.42136 (5) 0.35571 (15) 0.71361 (13) 0.0266 (3)
C21 0.44367 (6) 0.59566 (17) 0.66729 (18) 0.0416 (4)
C22 0.42311 (7) 0.73765 (19) 0.6920 (3) 0.0610 (6)
H22A 0.3851 0.7418 0.6487 0.091*
H22B 0.4399 0.8141 0.6623 0.091*
H22C 0.431 0.7487 0.7808 0.091*
C23 0.42947 (9) 0.5699 (2) 0.5302 (2) 0.0585 (5)
H23A 0.4446 0.4798 0.5173 0.088*
H23B 0.4433 0.6473 0.4942 0.088*
H23C 0.3913 0.5662 0.4905 0.088*
C24 0.50190 (6) 0.5826 (2) 0.7382 (2) 0.0567 (5)
H24A 0.5086 0.5904 0.8268 0.085*
H24B 0.5205 0.6586 0.713 0.085*
H24C 0.5143 0.4904 0.7207 0.085*
N1 0.32921 (4) 0.31854 (11) 0.67548 (9) 0.0202 (2)
N2 0.20095 (4) 0.39526 (11) 0.69179 (9) 0.0193 (2)
O1 0.30559 (3) 0.38315 (10) 0.83680 (8) 0.0241 (2)
O2 0.21970 (3) 0.15970 (9) 0.71609 (8) 0.02276 (19)
O3 0.18130 (4) 0.27044 (9) 0.83558 (8) 0.02354 (19)
O4 0.18374 (3) 0.63235 (9) 0.69062 (8) 0.02172 (18)
O5 0.12315 (3) 0.46991 (9) 0.69416 (8) 0.02019 (18)
O6 0.45332 (4) 0.29793 (11) 0.68025 (10) 0.0334 (2)
O7 0.41427 (4) 0.49542 (10) 0.71647 (10) 0.0339 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0190 (5) 0.0172 (6) 0.0226 (6) −0.0022 (5) 0.0079 (5) −0.0031 (5)
C2 0.0191 (5) 0.0204 (6) 0.0220 (6) 0.0017 (5) 0.0114 (5) 0.0025 (5)
C3 0.0210 (6) 0.0251 (6) 0.0202 (6) 0.0024 (5) 0.0062 (5) 0.0028 (5)
C4 0.0256 (6) 0.0246 (6) 0.0189 (6) 0.0019 (5) 0.0099 (5) 0.0014 (5)
C5 0.0238 (6) 0.0250 (6) 0.0201 (6) 0.0014 (5) 0.0112 (5) −0.0030 (5)
C6 0.0170 (5) 0.0195 (6) 0.0201 (6) 0.0002 (4) 0.0059 (4) 0.0016 (5)
C7 0.0273 (6) 0.0211 (6) 0.0252 (6) 0.0021 (5) 0.0130 (5) 0.0082 (5)
C8 0.0304 (7) 0.0421 (8) 0.0278 (7) 0.0013 (6) 0.0072 (6) 0.0126 (6)
C9 0.0626 (10) 0.0347 (8) 0.0419 (8) 0.0146 (7) 0.0380 (8) 0.0147 (7)
C10 0.0350 (7) 0.0340 (8) 0.0393 (8) −0.0104 (6) 0.0140 (6) 0.0054 (6)
C11 0.0189 (5) 0.0210 (6) 0.0154 (5) 0.0016 (5) 0.0066 (4) 0.0016 (4)
C12 0.0190 (6) 0.0217 (6) 0.0242 (6) 0.0050 (5) 0.0107 (5) 0.0023 (5)
C13 0.0322 (7) 0.0346 (7) 0.0312 (7) 0.0003 (6) 0.0175 (6) −0.0046 (6)
C14 0.0232 (6) 0.0280 (7) 0.0417 (8) 0.0010 (6) 0.0171 (5) 0.0017 (6)
C15 0.0244 (6) 0.0317 (7) 0.0348 (7) 0.0088 (6) 0.0139 (5) 0.0106 (6)
C16 0.0176 (6) 0.0314 (7) 0.0226 (6) 0.0003 (5) 0.0064 (5) −0.0077 (5)
C17 0.0219 (6) 0.0315 (7) 0.0194 (6) 0.0051 (5) 0.0071 (5) −0.0030 (5)
C18 0.0242 (6) 0.0494 (9) 0.0255 (7) 0.0091 (6) 0.0055 (5) −0.0005 (6)
C19 0.0268 (6) 0.0316 (7) 0.0237 (6) 0.0050 (5) 0.0093 (5) 0.0027 (5)
C20 0.0177 (6) 0.0295 (7) 0.0300 (6) −0.0012 (5) 0.0055 (5) −0.0103 (5)
C21 0.0267 (7) 0.0263 (8) 0.0749 (11) −0.0062 (6) 0.0220 (7) −0.0076 (7)
C22 0.0371 (9) 0.0299 (9) 0.1201 (19) −0.0021 (7) 0.0331 (11) −0.0089 (10)
C23 0.0633 (11) 0.0450 (10) 0.0737 (13) −0.0162 (9) 0.0321 (10) 0.0036 (10)
C24 0.0276 (8) 0.0362 (9) 0.1048 (16) −0.0080 (7) 0.0215 (9) −0.0115 (10)
N1 0.0176 (5) 0.0245 (5) 0.0188 (5) 0.0002 (4) 0.0067 (4) −0.0046 (4)
N2 0.0185 (5) 0.0181 (5) 0.0239 (5) 0.0023 (4) 0.0109 (4) 0.0029 (4)
O1 0.0227 (4) 0.0302 (5) 0.0204 (4) 0.0020 (4) 0.0088 (3) −0.0057 (4)
O2 0.0266 (4) 0.0188 (4) 0.0252 (4) 0.0030 (3) 0.0122 (3) 0.0011 (3)
O3 0.0299 (4) 0.0195 (4) 0.0266 (4) 0.0046 (4) 0.0167 (4) 0.0051 (4)
O4 0.0231 (4) 0.0181 (4) 0.0272 (4) 0.0004 (3) 0.0129 (3) 0.0020 (3)
O5 0.0181 (4) 0.0183 (4) 0.0266 (4) 0.0021 (3) 0.0110 (3) 0.0010 (3)
O6 0.0260 (5) 0.0315 (5) 0.0491 (6) −0.0011 (4) 0.0210 (4) −0.0096 (4)
O7 0.0236 (5) 0.0268 (5) 0.0550 (6) −0.0036 (4) 0.0184 (4) −0.0112 (5)

Geometric parameters (Å, °)

C1—O1 1.2202 (15) C13—H13A 0.98
C1—N1 1.3545 (16) C13—H13B 0.98
C1—C2 1.5382 (15) C13—H13C 0.98
C2—N2 1.4679 (15) C14—H14A 0.98
C2—C3 1.5215 (17) C14—H14B 0.98
C2—H2 1 C14—H14C 0.98
C3—C4 1.5220 (16) C15—H15A 0.98
C3—H3A 0.99 C15—H15B 0.98
C3—H3B 0.99 C15—H15C 0.98
C4—C5 1.5165 (17) C16—N1 1.4646 (15)
C4—H4A 0.99 C16—C17 1.5317 (19)
C4—H4B 0.99 C16—C20 1.5327 (19)
C5—N1 1.4688 (15) C16—H16 1
C5—H5A 0.99 C17—C19 1.5254 (18)
C5—H5B 0.99 C17—C18 1.5353 (17)
C6—O2 1.2035 (15) C17—H17 1
C6—O3 1.3217 (15) C18—H18A 0.98
C6—N2 1.4074 (16) C18—H18B 0.98
C7—O3 1.4902 (14) C18—H18C 0.98
C7—C10 1.507 (2) C19—H19A 0.98
C7—C9 1.5107 (19) C19—H19B 0.98
C7—C8 1.5145 (18) C19—H19C 0.98
C8—H8A 0.98 C20—O6 1.2021 (17)
C8—H8B 0.98 C20—O7 1.3339 (18)
C8—H8C 0.98 C21—O7 1.4785 (19)
C9—H9A 0.98 C21—C24 1.513 (2)
C9—H9B 0.98 C21—C23 1.515 (3)
C9—H9C 0.98 C21—C22 1.518 (2)
C10—H10A 0.98 C22—H22A 0.98
C10—H10B 0.98 C22—H22B 0.98
C10—H10C 0.98 C22—H22C 0.98
C11—O4 1.2052 (15) C23—H23A 0.98
C11—O5 1.3298 (15) C23—H23B 0.98
C11—N2 1.3976 (16) C23—H23C 0.98
C12—O5 1.4813 (14) C24—H24A 0.98
C12—C13 1.5105 (18) C24—H24B 0.98
C12—C14 1.5127 (17) C24—H24C 0.98
C12—C15 1.5224 (17)
O1—C1—N1 123.21 (11) H14A—C14—H14B 109.5
O1—C1—C2 119.83 (11) C12—C14—H14C 109.5
N1—C1—C2 116.74 (10) H14A—C14—H14C 109.5
N2—C2—C3 112.35 (10) H14B—C14—H14C 109.5
N2—C2—C1 109.72 (9) C12—C15—H15A 109.5
C3—C2—C1 115.44 (10) C12—C15—H15B 109.5
N2—C2—H2 106.2 H15A—C15—H15B 109.5
C3—C2—H2 106.2 C12—C15—H15C 109.5
C1—C2—H2 106.2 H15A—C15—H15C 109.5
C2—C3—C4 108.87 (10) H15B—C15—H15C 109.5
C2—C3—H3A 109.9 N1—C16—C17 113.71 (10)
C4—C3—H3A 109.9 N1—C16—C20 107.61 (11)
C2—C3—H3B 109.9 C17—C16—C20 112.84 (10)
C4—C3—H3B 109.9 N1—C16—H16 107.5
H3A—C3—H3B 108.3 C17—C16—H16 107.5
C5—C4—C3 108.66 (10) C20—C16—H16 107.5
C5—C4—H4A 110 C19—C17—C16 111.07 (10)
C3—C4—H4A 110 C19—C17—C18 109.69 (11)
C5—C4—H4B 110 C16—C17—C18 109.32 (11)
C3—C4—H4B 110 C19—C17—H17 108.9
H4A—C4—H4B 108.3 C16—C17—H17 108.9
N1—C5—C4 112.37 (10) C18—C17—H17 108.9
N1—C5—H5A 109.1 C17—C18—H18A 109.5
C4—C5—H5A 109.1 C17—C18—H18B 109.5
N1—C5—H5B 109.1 H18A—C18—H18B 109.5
C4—C5—H5B 109.1 C17—C18—H18C 109.5
H5A—C5—H5B 107.9 H18A—C18—H18C 109.5
O2—C6—O3 127.53 (11) H18B—C18—H18C 109.5
O2—C6—N2 121.03 (11) C17—C19—H19A 109.5
O3—C6—N2 111.35 (10) C17—C19—H19B 109.5
O3—C7—C10 110.94 (10) H19A—C19—H19B 109.5
O3—C7—C9 101.83 (10) C17—C19—H19C 109.5
C10—C7—C9 110.80 (12) H19A—C19—H19C 109.5
O3—C7—C8 109.41 (10) H19B—C19—H19C 109.5
C10—C7—C8 112.32 (12) O6—C20—O7 125.73 (14)
C9—C7—C8 111.06 (12) O6—C20—C16 124.84 (13)
C7—C8—H8A 109.5 O7—C20—C16 109.43 (11)
C7—C8—H8B 109.5 O7—C21—C24 110.31 (15)
H8A—C8—H8B 109.5 O7—C21—C23 109.23 (13)
C7—C8—H8C 109.5 C24—C21—C23 112.71 (16)
H8A—C8—H8C 109.5 O7—C21—C22 101.79 (13)
H8B—C8—H8C 109.5 C24—C21—C22 110.88 (14)
C7—C9—H9A 109.5 C23—C21—C22 111.37 (18)
C7—C9—H9B 109.5 C21—C22—H22A 109.5
H9A—C9—H9B 109.5 C21—C22—H22B 109.5
C7—C9—H9C 109.5 H22A—C22—H22B 109.5
H9A—C9—H9C 109.5 C21—C22—H22C 109.5
H9B—C9—H9C 109.5 H22A—C22—H22C 109.5
C7—C10—H10A 109.5 H22B—C22—H22C 109.5
C7—C10—H10B 109.5 C21—C23—H23A 109.5
H10A—C10—H10B 109.5 C21—C23—H23B 109.5
C7—C10—H10C 109.5 H23A—C23—H23B 109.5
H10A—C10—H10C 109.5 C21—C23—H23C 109.5
H10B—C10—H10C 109.5 H23A—C23—H23C 109.5
O4—C11—O5 126.53 (11) H23B—C23—H23C 109.5
O4—C11—N2 122.50 (11) C21—C24—H24A 109.5
O5—C11—N2 110.82 (10) C21—C24—H24B 109.5
O5—C12—C13 108.98 (10) H24A—C24—H24B 109.5
O5—C12—C14 102.08 (10) C21—C24—H24C 109.5
C13—C12—C14 111.34 (11) H24A—C24—H24C 109.5
O5—C12—C15 110.83 (10) H24B—C24—H24C 109.5
C13—C12—C15 112.52 (12) C1—N1—C16 118.35 (10)
C14—C12—C15 110.60 (11) C1—N1—C5 124.89 (10)
C12—C13—H13A 109.5 C16—N1—C5 116.10 (10)
C12—C13—H13B 109.5 C11—N2—C6 126.44 (10)
H13A—C13—H13B 109.5 C11—N2—C2 117.23 (10)
C12—C13—H13C 109.5 C6—N2—C2 116.08 (10)
H13A—C13—H13C 109.5 C6—O3—C7 120.10 (10)
H13B—C13—H13C 109.5 C11—O5—C12 120.31 (9)
C12—C14—H14A 109.5 C20—O7—C21 121.25 (11)
C12—C14—H14B 109.5
O1—C1—C2—N2 −34.52 (15) O5—C11—N2—C6 −33.73 (15)
N1—C1—C2—N2 150.65 (10) O4—C11—N2—C2 −23.56 (16)
O1—C1—C2—C3 −162.67 (11) O5—C11—N2—C2 152.30 (10)
N1—C1—C2—C3 22.50 (16) O2—C6—N2—C11 162.50 (11)
N2—C2—C3—C4 −174.17 (10) O3—C6—N2—C11 −20.70 (16)
C1—C2—C3—C4 −47.33 (14) O2—C6—N2—C2 −23.47 (16)
C2—C3—C4—C5 62.18 (13) O3—C6—N2—C2 153.33 (10)
C3—C4—C5—N1 −52.90 (14) C3—C2—N2—C11 −102.88 (12)
N1—C16—C17—C19 −47.91 (14) C1—C2—N2—C11 127.27 (11)
C20—C16—C17—C19 −170.83 (10) C3—C2—N2—C6 82.52 (13)
N1—C16—C17—C18 −169.09 (10) C1—C2—N2—C6 −47.33 (14)
C20—C16—C17—C18 67.99 (14) O2—C6—O3—C7 5.36 (18)
N1—C16—C20—O6 −119.62 (14) N2—C6—O3—C7 −171.17 (9)
C17—C16—C20—O6 6.64 (18) C10—C7—O3—C6 −63.25 (15)
N1—C16—C20—O7 59.70 (13) C9—C7—O3—C6 178.81 (12)
C17—C16—C20—O7 −174.04 (10) C8—C7—O3—C6 61.23 (15)
O1—C1—N1—C16 1.70 (18) O4—C11—O5—C12 −11.94 (17)
C2—C1—N1—C16 176.34 (11) N2—C11—O5—C12 172.41 (9)
O1—C1—N1—C5 172.01 (12) C13—C12—O5—C11 −62.98 (14)
C2—C1—N1—C5 −13.36 (18) C14—C12—O5—C11 179.17 (10)
C17—C16—N1—C1 105.82 (13) C15—C12—O5—C11 61.37 (13)
C20—C16—N1—C1 −128.44 (12) O6—C20—O7—C21 5.1 (2)
C17—C16—N1—C5 −65.34 (14) C16—C20—O7—C21 −174.19 (12)
C20—C16—N1—C5 60.40 (14) C24—C21—O7—C20 −61.66 (19)
C4—C5—N1—C1 29.46 (17) C23—C21—O7—C20 62.76 (18)
C4—C5—N1—C16 −160.04 (11) C22—C21—O7—C20 −179.40 (14)
O4—C11—N2—C6 150.41 (12)

Footnotes

1

CAS Registry Number 500222-63-9.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2462).

References

  1. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  6. Oguz, U. (2003). PhD dissertation, Louisiana State University, Baton Rouge, LA, USA.
  7. Oguz, U., Gauthier, T. J. & McLaughlin, M. L. (2001). Peptides: the Wave of the Future. Proceedings of the 2nd International and the 17th American Peptide Symposium, San Diego, CA, USA, June 9-14, 2001, pp. 46–47. San Diego: The American Peptide Society
  8. Sheldrick, G. (2004). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Valle, G., Crisma, M., Toniolo, C., Yu, K.-L. & Johnson, R. L. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 83–87.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043212/pv2462sup1.cif

e-67-o3057-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043212/pv2462Isup2.hkl

e-67-o3057-Isup2.hkl (232.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES