Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3061. doi: 10.1107/S1600536811042991

3-[(Z)-Benzyl­idene]-2,3-dihydro-1,5-benzothia­zepin-4(5H)-one

V Sabari a, G Jagadeesan a, Raman Selvakumar b, Mannickam Bakthadoss b, S Aravindhan a,*
PMCID: PMC3247452  PMID: 22220070

Abstract

In the title compound, C16H13NOS, the seven-membered ring adopts a distorted half-chair conformation. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains running along the b axis. The crystal packing is further stabilized by C—H⋯O inter­actions.

Related literature

For the pharmaceutical properties of thia­zepin derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For the conformation of thia­zepin derivatives, see: Sridevi et al. (2011).graphic file with name e-67-o3061-scheme1.jpg

Experimental

Crystal data

  • C16H13NOS

  • M r = 267.33

  • Orthorhombic, Inline graphic

  • a = 10.7711 (9) Å

  • b = 7.8736 (7) Å

  • c = 31.610 (3) Å

  • V = 2680.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.980, T max = 0.990

  • 13085 measured reflections

  • 3306 independent reflections

  • 2643 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 1.04

  • 3306 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042991/bt5678sup1.cif

e-67-o3061-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042991/bt5678Isup2.hkl

e-67-o3061-Isup2.hkl (159KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042991/bt5678Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H⋯Oi 0.872 (18) 1.996 (18) 2.8480 (16) 165.4 (16)
C14—H14⋯Oii 0.93 2.57 3.485 (2) 167
C16—H16⋯O 0.93 2.60 3.397 (2) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SA thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective antihistaminic compounds (Metys et al., 1965). Considering the wide range of biological activities of the thiazepin derivatives, we determined the crystal structure of the title compound. The seven membered thiazepin ring adopts a distorted half-chair conformation (Sridevi et al., 2011). Crystal structure and crystal packing of the molecule were stabilized by intra (C16—H16···O) and Inter (N—H···O, C14—H14···O) molecular interaction.

Experimental

A mixture of (z)-methyl2-(bromomethyl)-3-phenylacrylate (2 mmol) and O-aminothiophenol(2 mmol) in the presence of potassium tert-butoxide (2,4 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3X20ml). The organic layer was washed with brine (2X20ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which provided a crude mass (Z)-methyl 2-((2-aminnophyenylthio)methyl)-3-phenylacrylate.The crude product was treated with a catalytic amount of p-toluene sulphonic acid (0.4 mmol),in p-xylene(10 ml), under reflux conditions for 12 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure and worked up as mentioned previously, which successfully provide the crude final product. The final product was purified by column chromatography on silica gel to afford the title compound in good yield(71%).

Refinement

H atoms (except H10 and the amino H atom which were freely refined) were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C-H ranging from 0.93Å to 0.97Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

A view of the crystal packing H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C16H13NOS F(000) = 1120
Mr = 267.33 Dx = 1.325 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 8725 reflections
a = 10.7711 (9) Å θ = 2.8–29.1°
b = 7.8736 (7) Å µ = 0.23 mm1
c = 31.610 (3) Å T = 293 K
V = 2680.7 (4) Å3 Orthorhombic, colourless
Z = 8 0.2 × 0.2 × 0.2 mm

Data collection

Bruker KappaCCD APEXII diffractometer 3306 independent reflections
Radiation source: fine-focus sealed tube 2643 reflections with I > 2σ(I)
graphite Rint = 0.028
Detector resolution: 15.9948 pixels mm-1 θmax = 28.3°, θmin = 1.3°
ω scans h = −14→7
Absorption correction: multi-scan (APEX2; Bruker, 2004) k = −5→10
Tmin = 0.980, Tmax = 0.990 l = −23→42
13085 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6524P] where P = (Fo2 + 2Fc2)/3
3306 reflections (Δ/σ)max = 0.002
180 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H10 1.0606 (16) −0.099 (2) 0.6162 (5) 0.048 (5)*
H 0.8379 (16) 0.440 (2) 0.6294 (5) 0.042 (4)*
S 0.90221 (4) 0.20135 (6) 0.529568 (12) 0.04764 (14)
O 0.73812 (10) 0.16660 (13) 0.64118 (3) 0.0435 (3)
N 0.88207 (11) 0.35628 (15) 0.61960 (4) 0.0351 (3)
C8 0.90106 (16) 0.01129 (19) 0.56317 (5) 0.0461 (4)
H8A 0.8216 −0.0458 0.5605 0.055*
H8B 0.9653 −0.0665 0.5538 0.055*
C7 0.92280 (14) 0.05759 (17) 0.60855 (4) 0.0359 (3)
C6 0.83940 (13) 0.19642 (17) 0.62461 (4) 0.0333 (3)
C1 1.11685 (15) 0.3856 (2) 0.53349 (5) 0.0445 (4)
H1 1.1331 0.3404 0.5069 0.053*
C5 0.98953 (13) 0.39991 (16) 0.59611 (4) 0.0332 (3)
C2 1.19757 (16) 0.5031 (2) 0.55064 (6) 0.0494 (4)
H2 1.2669 0.5381 0.5354 0.059*
C4 1.07215 (15) 0.51731 (19) 0.61325 (5) 0.0432 (4)
H4 1.0580 0.5614 0.6401 0.052*
C9 1.01129 (14) 0.33387 (17) 0.55554 (4) 0.0359 (3)
C16 0.98687 (17) 0.1038 (2) 0.70536 (5) 0.0515 (4)
H16 0.9123 0.1553 0.6980 0.062*
C11 1.05193 (15) 0.01041 (19) 0.67530 (5) 0.0412 (3)
C3 1.17543 (16) 0.5686 (2) 0.59035 (6) 0.0494 (4)
H3 1.2300 0.6476 0.6019 0.059*
C13 1.2089 (2) −0.0450 (3) 0.72861 (7) 0.0690 (6)
H13 1.2840 −0.0947 0.7362 0.083*
C14 1.1430 (2) 0.0472 (3) 0.75774 (7) 0.0667 (6)
H14 1.1730 0.0599 0.7851 0.080*
C10 1.01213 (15) −0.01630 (18) 0.63123 (5) 0.0400 (3)
C12 1.16375 (17) −0.0644 (2) 0.68770 (6) 0.0555 (4)
H12 1.2087 −0.1283 0.6683 0.067*
C15 1.0318 (2) 0.1210 (3) 0.74614 (6) 0.0626 (5)
H15 0.9867 0.1830 0.7659 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0540 (3) 0.0560 (3) 0.0329 (2) −0.00587 (19) −0.00722 (17) −0.00413 (17)
O 0.0376 (6) 0.0446 (6) 0.0483 (6) −0.0052 (5) 0.0072 (5) −0.0052 (5)
N 0.0361 (7) 0.0308 (6) 0.0385 (6) 0.0026 (5) 0.0060 (5) −0.0043 (5)
C8 0.0582 (10) 0.0399 (8) 0.0403 (8) −0.0077 (7) 0.0035 (7) −0.0108 (6)
C7 0.0417 (8) 0.0298 (6) 0.0361 (7) −0.0036 (6) 0.0064 (6) −0.0030 (5)
C6 0.0345 (7) 0.0355 (7) 0.0299 (6) −0.0014 (6) −0.0017 (5) −0.0031 (5)
C1 0.0500 (9) 0.0433 (8) 0.0401 (8) 0.0036 (7) 0.0095 (7) 0.0038 (7)
C5 0.0341 (7) 0.0283 (6) 0.0372 (7) 0.0031 (5) 0.0010 (6) 0.0020 (5)
C2 0.0441 (9) 0.0434 (8) 0.0607 (10) −0.0010 (7) 0.0135 (8) 0.0078 (7)
C4 0.0464 (9) 0.0358 (7) 0.0472 (9) −0.0032 (7) 0.0022 (7) −0.0056 (6)
C9 0.0388 (8) 0.0343 (7) 0.0345 (7) 0.0022 (6) −0.0006 (6) 0.0018 (5)
C16 0.0490 (10) 0.0629 (10) 0.0425 (9) 0.0091 (8) −0.0011 (7) −0.0004 (8)
C11 0.0413 (8) 0.0367 (7) 0.0457 (8) 0.0010 (6) 0.0020 (7) 0.0063 (6)
C3 0.0447 (9) 0.0383 (8) 0.0652 (11) −0.0079 (7) 0.0023 (8) −0.0021 (7)
C13 0.0549 (11) 0.0700 (13) 0.0821 (14) 0.0031 (10) −0.0195 (10) 0.0156 (11)
C14 0.0707 (13) 0.0733 (13) 0.0561 (11) −0.0123 (11) −0.0206 (10) 0.0097 (10)
C10 0.0448 (9) 0.0311 (7) 0.0442 (8) 0.0034 (6) 0.0101 (7) −0.0017 (6)
C12 0.0491 (10) 0.0524 (10) 0.0649 (11) 0.0090 (8) 0.0010 (8) 0.0075 (8)
C15 0.0678 (13) 0.0746 (12) 0.0454 (9) 0.0002 (10) −0.0033 (9) −0.0049 (9)

Geometric parameters (Å, °)

S—C9 1.7728 (15) C2—H2 0.9300
S—C8 1.8352 (17) C4—C3 1.387 (2)
O—C6 1.2326 (17) C4—H4 0.9300
N—C6 1.3493 (18) C16—C15 1.384 (2)
N—C5 1.4174 (18) C16—C11 1.391 (2)
N—H 0.872 (18) C16—H16 0.9300
C8—C7 1.498 (2) C11—C12 1.397 (2)
C8—H8A 0.9700 C11—C10 1.473 (2)
C8—H8B 0.9700 C3—H3 0.9300
C7—C10 1.334 (2) C13—C14 1.371 (3)
C7—C6 1.503 (2) C13—C12 1.390 (3)
C6—O 1.2326 (17) C13—H13 0.9300
C1—C2 1.381 (2) C14—C15 1.381 (3)
C1—C9 1.394 (2) C14—H14 0.9300
C1—H1 0.9300 C10—H10 0.962 (18)
C5—C4 1.393 (2) C12—H12 0.9300
C5—C9 1.4037 (19) C15—H15 0.9300
C2—C3 1.378 (2)
C9—S—C8 102.50 (7) C5—C4—H4 119.9
C6—N—C5 124.46 (12) C1—C9—C5 118.98 (14)
C6—N—H 118.7 (11) C1—C9—S 118.75 (12)
C5—N—H 116.6 (11) C5—C9—S 122.04 (11)
C7—C8—S 110.78 (10) C15—C16—C11 120.80 (17)
C7—C8—H8A 109.5 C15—C16—H16 119.6
S—C8—H8A 109.5 C11—C16—H16 119.6
C7—C8—H8B 109.5 C16—C11—C12 117.75 (16)
S—C8—H8B 109.5 C16—C11—C10 125.11 (15)
H8A—C8—H8B 108.1 C12—C11—C10 117.14 (15)
C10—C7—C8 121.42 (14) C2—C3—C4 120.34 (16)
C10—C7—C6 124.53 (13) C2—C3—H3 119.8
C8—C7—C6 114.01 (13) C4—C3—H3 119.8
O—C6—N 121.94 (13) C14—C13—C12 120.12 (19)
O—C6—N 121.94 (13) C14—C13—H13 119.9
O—C6—C7 122.26 (13) C12—C13—H13 119.9
O—C6—C7 122.26 (13) C13—C14—C15 119.60 (19)
N—C6—C7 115.79 (12) C13—C14—H14 120.2
C2—C1—C9 120.89 (15) C15—C14—H14 120.2
C2—C1—H1 119.6 C7—C10—C11 131.02 (14)
C9—C1—H1 119.6 C7—C10—H10 115.1 (11)
C4—C5—C9 119.65 (13) C11—C10—H10 113.9 (11)
C4—C5—N 118.61 (13) C13—C12—C11 121.10 (18)
C9—C5—N 121.68 (13) C13—C12—H12 119.5
C3—C2—C1 119.96 (15) C11—C12—H12 119.5
C3—C2—H2 120.0 C14—C15—C16 120.63 (19)
C1—C2—H2 120.0 C14—C15—H15 119.7
C3—C4—C5 120.17 (15) C16—C15—H15 119.7
C3—C4—H4 119.9
C9—S—C8—C7 32.87 (13) C4—C5—C9—C1 1.0 (2)
S—C8—C7—C10 −126.73 (14) N—C5—C9—C1 178.07 (13)
S—C8—C7—C6 50.98 (16) C4—C5—C9—S −173.34 (11)
O—O—C6—N 0.0 (4) N—C5—C9—S 3.70 (19)
O—O—C6—C7 0.0 (3) C8—S—C9—C1 120.08 (13)
C5—N—C6—O −171.54 (13) C8—S—C9—C5 −65.54 (13)
C5—N—C6—O −171.54 (13) C15—C16—C11—C12 −0.2 (3)
C5—N—C6—C7 8.2 (2) C15—C16—C11—C10 179.74 (17)
C10—C7—C6—O −92.01 (19) C1—C2—C3—C4 −0.1 (3)
C8—C7—C6—O 90.37 (16) C5—C4—C3—C2 −0.4 (3)
C10—C7—C6—O −92.01 (19) C12—C13—C14—C15 −0.2 (3)
C8—C7—C6—O 90.37 (16) C8—C7—C10—C11 178.60 (15)
C10—C7—C6—N 88.27 (18) C6—C7—C10—C11 1.1 (3)
C8—C7—C6—N −89.35 (16) C16—C11—C10—C7 11.7 (3)
C6—N—C5—C4 −135.93 (15) C12—C11—C10—C7 −168.36 (17)
C6—N—C5—C9 47.0 (2) C14—C13—C12—C11 0.7 (3)
C9—C1—C2—C3 1.1 (2) C16—C11—C12—C13 −0.5 (3)
C9—C5—C4—C3 0.0 (2) C10—C11—C12—C13 179.57 (17)
N—C5—C4—C3 −177.16 (14) C13—C14—C15—C16 −0.4 (3)
C2—C1—C9—C5 −1.6 (2) C11—C16—C15—C14 0.6 (3)
C2—C1—C9—S 172.96 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H···Oi 0.872 (18) 1.996 (18) 2.8480 (16) 165.4 (16)
C14—H14···Oii 0.93 2.57 3.485 (2) 167.
C16—H16···O 0.93 2.60 3.397 (2) 144.

Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5678).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Metys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871–873. [PubMed]
  4. Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Sridevi, D., Bhaskaran, S., Usha, G., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o243. [DOI] [PMC free article] [PubMed]
  8. Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042991/bt5678sup1.cif

e-67-o3061-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042991/bt5678Isup2.hkl

e-67-o3061-Isup2.hkl (159KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042991/bt5678Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES