Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3073. doi: 10.1107/S1600536811043819

Benzene-1,4-diol–5-(1H-imidazol-1-yl)pyrimidine (1/1)

Yan-Ke Jiang a, Gui-Ge Hou b,*
PMCID: PMC3247463  PMID: 22220081

Abstract

The asymmetric unit of title compound, C7H6N4·C6H6O2, contains one 5-(1H-imidazol-1-yl)pyrimidine mol­ecule and two half benzene-1,4-diol mol­ecules; the benzene-1,4-diol mol­ecules are located on individual inversion centers. In the pyrimidine mol­ecule, the imidazole ring is twisted with respect to the pyrimidine ring at a dihedral angle of 25.73 (7)°. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules to form supra­molecular chains. π–π stacking is also observed in the crystal, the centroid–centroid distance between parallel imdazole rings being 3.5543 (16) Å.

Related literature

For related structures, see: Nieuwenhuyzen et al. (1999); Clausen et al. (2010).graphic file with name e-67-o3073-scheme1.jpg

Experimental

Crystal data

  • C7H6N4·C6H6O2

  • M r = 256.27

  • Triclinic, Inline graphic

  • a = 6.8219 (18) Å

  • b = 9.550 (3) Å

  • c = 10.449 (3) Å

  • α = 108.177 (3)°

  • β = 102.381 (4)°

  • γ = 98.602 (4)°

  • V = 614.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.36 × 0.24 × 0.12 mm

Data collection

  • Bruker SMART 1000 diffractometer

  • 3103 measured reflections

  • 2176 independent reflections

  • 1791 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.115

  • S = 1.04

  • 2176 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043819/xu5356sup1.cif

e-67-o3073-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043819/xu5356Isup2.hkl

e-67-o3073-Isup2.hkl (107KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043819/xu5356Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 1.96 2.764 (2) 168
O2—H2A⋯N4ii 0.82 2.02 2.835 (2) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Scientific Research Project of Chongqing Education Committee (grant Nos. KJ100720 and KJTD201020), Chongqing Technology and Business University (grant No. 2010-56-07), and Binzhou Medical University, China.

supplementary crystallographic information

Comment

The N atoms on rigid rings, such as pyridine, pyrimidine, imidazole et al., could form strong hydrogen-bond interaction and play an essential role in synthesis of supermolecular compounds. 5-(1H-Imidazol-1-yl)pyrimidine (L1) includes three such nitrogen atoms which behave as hydrogen-bond acceptors. benzene-1,4-diol (L2) is a good hydrogen-bonding donor which can form co-crystals with heterocyclic amine systems (Nieuwenhuyzen et al., 1999; Clausen et al., 2010). Here we report the co-crystal states of L1 and L2.

The molecular structure is shown in Fig. 1. The asymmetric unit contains one L1 molecule and two half of L2 in the asymmetric unit. A H-bonding driven double chain was generated from O—H···N hydrogen bonds between these molecules (Fig. 2). Imidazol ring is twisted to pyrimidine ring (the dihedral angle, 25.73 (7)°), while nearly coplanar with benzene ring of L2 (the dihedral angle, 5.54 (7)°). The π–π stacking is also observed in the crystal structure, centroids distance between parallel imdazole ring being 3.5543 (16) Å.

Experimental

A CH2Cl2 and CH3CN solution (15 ml, 1:1, v/v) of 5-(1H-imidazol-1-yl)pyrimidine (15.7 mg, 0.1 mmol) and benzene-1,4-diol (11.0 mg, 0.1 mmol) was kept at room temperature. Upon slow evaporation of the solvent about 5 days, colorless crystals were obtained.

Refinement

All H atoms were placed in idealized positions and treated as riding, with C—H = 0.93 and O—H = 0.82 Å, Uiso(H) = 1.2Ueq(C), or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with 30% probability displacement ellipsoids.(Symmetry codes: (i) -x,-y + 1,-z + 1)

Fig. 2.

Fig. 2.

A view of the hydrogen-bonded double-chain observed in the crystal structure of (1).

Crystal data

C7H6N4·C6H6O2 Z = 2
Mr = 256.27 F(000) = 268
Triclinic, P1 Dx = 1.385 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8219 (18) Å Cell parameters from 1283 reflections
b = 9.550 (3) Å θ = 2.3–26.8°
c = 10.449 (3) Å µ = 0.10 mm1
α = 108.177 (3)° T = 298 K
β = 102.381 (4)° Block, colourless
γ = 98.602 (4)° 0.36 × 0.24 × 0.12 mm
V = 614.3 (3) Å3

Data collection

Bruker SMART 1000 diffractometer 1791 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.013
graphite θmax = 25.2°, θmin = 2.1°
φ and ω scans h = −6→8
3103 measured reflections k = −11→11
2176 independent reflections l = −11→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.0979P] where P = (Fo2 + 2Fc2)/3
2176 reflections (Δ/σ)max = 0.002
174 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3093 (3) 0.5951 (2) 0.03876 (18) 0.0443 (4)
H1 0.3309 0.6809 0.0146 0.053*
C2 0.2073 (3) 0.3702 (2) 0.02839 (19) 0.0489 (5)
H2 0.1427 0.2677 −0.0065 0.059*
C3 0.3175 (3) 0.4481 (2) 0.16172 (19) 0.0479 (5)
H3 0.3432 0.4109 0.2345 0.058*
C4 0.6323 (3) 0.83862 (19) 0.27343 (19) 0.0468 (5)
H4 0.6347 0.8351 0.1838 0.056*
C5 0.5094 (2) 0.71929 (18) 0.28759 (17) 0.0379 (4)
C6 0.5138 (3) 0.7279 (2) 0.42203 (18) 0.0470 (5)
H6 0.4334 0.6490 0.4355 0.056*
C7 0.7401 (3) 0.9551 (2) 0.5069 (2) 0.0511 (5)
H7 0.8208 1.0382 0.5843 0.061*
C8 −0.0026 (3) 0.41667 (18) 0.58820 (17) 0.0396 (4)
C9 −0.0960 (3) 0.34868 (19) 0.44598 (18) 0.0465 (5)
H9 −0.1616 0.2463 0.4087 0.056*
C10 0.0931 (3) 0.56915 (19) 0.64137 (18) 0.0459 (5)
H10 0.1561 0.6168 0.7371 0.055*
C11 0.1916 (3) 0.0311 (2) 0.09527 (17) 0.0416 (4)
C12 0.0237 (3) 0.06699 (19) 0.14148 (17) 0.0425 (4)
H12 0.0393 0.1122 0.2370 0.051*
C13 −0.1671 (3) 0.03627 (19) 0.04686 (17) 0.0415 (4)
H13 −0.2791 0.0609 0.0788 0.050*
N1 0.2027 (2) 0.46188 (16) −0.04935 (15) 0.0475 (4)
N2 0.3850 (2) 0.59439 (15) 0.16903 (14) 0.0397 (4)
N3 0.7474 (2) 0.95816 (17) 0.38243 (17) 0.0525 (4)
N4 0.6296 (2) 0.84580 (19) 0.53321 (15) 0.0515 (4)
O1 −0.0130 (2) 0.33007 (14) 0.67005 (13) 0.0547 (4)
H1A 0.0532 0.3808 0.7513 0.082*
O2 0.3846 (2) 0.0619 (2) 0.18407 (13) 0.0668 (4)
H2A 0.3794 0.0945 0.2655 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0524 (11) 0.0423 (10) 0.0381 (9) 0.0075 (8) 0.0114 (8) 0.0164 (8)
C2 0.0564 (12) 0.0382 (9) 0.0478 (11) 0.0042 (8) 0.0165 (9) 0.0111 (8)
C3 0.0618 (12) 0.0412 (10) 0.0434 (10) 0.0076 (9) 0.0165 (9) 0.0194 (8)
C4 0.0538 (11) 0.0427 (10) 0.0423 (10) 0.0081 (8) 0.0140 (8) 0.0139 (8)
C5 0.0377 (9) 0.0386 (9) 0.0359 (9) 0.0106 (7) 0.0098 (7) 0.0106 (7)
C6 0.0410 (10) 0.0555 (11) 0.0398 (10) 0.0046 (8) 0.0089 (8) 0.0153 (9)
C7 0.0441 (11) 0.0489 (11) 0.0451 (11) 0.0067 (9) 0.0029 (8) 0.0045 (9)
C8 0.0418 (10) 0.0383 (9) 0.0368 (9) 0.0080 (7) 0.0118 (7) 0.0110 (8)
C9 0.0550 (11) 0.0324 (8) 0.0407 (10) −0.0002 (8) 0.0108 (8) 0.0041 (8)
C10 0.0535 (11) 0.0426 (10) 0.0297 (9) 0.0019 (8) 0.0066 (8) 0.0046 (8)
C11 0.0441 (10) 0.0465 (10) 0.0340 (9) 0.0105 (8) 0.0081 (7) 0.0157 (8)
C12 0.0505 (11) 0.0475 (10) 0.0289 (8) 0.0139 (8) 0.0129 (8) 0.0107 (8)
C13 0.0450 (10) 0.0449 (10) 0.0403 (9) 0.0151 (8) 0.0183 (8) 0.0164 (8)
N1 0.0521 (9) 0.0459 (9) 0.0380 (8) 0.0047 (7) 0.0097 (7) 0.0112 (7)
N2 0.0446 (8) 0.0395 (8) 0.0342 (8) 0.0069 (6) 0.0121 (6) 0.0126 (6)
N3 0.0547 (10) 0.0431 (9) 0.0503 (10) 0.0038 (7) 0.0100 (8) 0.0104 (7)
N4 0.0439 (9) 0.0629 (10) 0.0371 (8) 0.0066 (8) 0.0054 (7) 0.0101 (8)
O1 0.0723 (10) 0.0434 (7) 0.0401 (7) 0.0011 (6) 0.0070 (7) 0.0149 (6)
O2 0.0464 (8) 0.1082 (12) 0.0402 (8) 0.0235 (8) 0.0075 (6) 0.0196 (8)

Geometric parameters (Å, °)

C1—N1 1.304 (2) C7—H7 0.9300
C1—N2 1.351 (2) C8—O1 1.368 (2)
C1—H1 0.9300 C8—C9 1.380 (2)
C2—C3 1.340 (3) C8—C10 1.382 (2)
C2—N1 1.367 (2) C9—C10i 1.378 (2)
C2—H2 0.9300 C9—H9 0.9300
C3—N2 1.377 (2) C10—C9i 1.378 (2)
C3—H3 0.9300 C10—H10 0.9300
C4—N3 1.324 (2) C11—O2 1.368 (2)
C4—C5 1.377 (2) C11—C13ii 1.383 (2)
C4—H4 0.9300 C11—C12 1.383 (3)
C5—C6 1.375 (2) C12—C13 1.382 (2)
C5—N2 1.415 (2) C12—H12 0.9300
C6—N4 1.329 (2) C13—C11ii 1.383 (2)
C6—H6 0.9300 C13—H13 0.9300
C7—N3 1.321 (2) O1—H1A 0.8200
C7—N4 1.329 (2) O2—H2A 0.8200
N1—C1—N2 112.37 (16) C10i—C9—C8 120.72 (16)
N1—C1—H1 123.8 C10i—C9—H9 119.6
N2—C1—H1 123.8 C8—C9—H9 119.6
C3—C2—N1 110.82 (15) C9i—C10—C8 120.67 (16)
C3—C2—H2 124.6 C9i—C10—H10 119.7
N1—C2—H2 124.6 C8—C10—H10 119.7
C2—C3—N2 105.99 (16) O2—C11—C13ii 117.69 (16)
C2—C3—H3 127.0 O2—C11—C12 122.90 (15)
N2—C3—H3 127.0 C13ii—C11—C12 119.40 (16)
N3—C4—C5 122.56 (17) C13—C12—C11 120.52 (16)
N3—C4—H4 118.7 C13—C12—H12 119.7
C5—C4—H4 118.7 C11—C12—H12 119.7
C6—C5—C4 116.74 (16) C12—C13—C11ii 120.08 (17)
C6—C5—N2 121.95 (15) C12—C13—H13 120.0
C4—C5—N2 121.31 (15) C11ii—C13—H13 120.0
N4—C6—C5 121.87 (17) C1—N1—C2 104.87 (15)
N4—C6—H6 119.1 C1—N2—C3 105.95 (14)
C5—C6—H6 119.1 C1—N2—C5 126.48 (14)
N3—C7—N4 126.88 (17) C3—N2—C5 127.57 (15)
N3—C7—H7 116.6 C7—N3—C4 115.79 (16)
N4—C7—H7 116.6 C7—N4—C6 116.16 (16)
O1—C8—C9 118.15 (15) C8—O1—H1A 109.5
O1—C8—C10 123.22 (15) C11—O2—H2A 109.5
C9—C8—C10 118.61 (16)
N1—C2—C3—N2 0.1 (2) C3—C2—N1—C1 −0.5 (2)
N3—C4—C5—C6 −1.2 (3) N1—C1—N2—C3 −0.7 (2)
N3—C4—C5—N2 178.71 (17) N1—C1—N2—C5 178.84 (15)
C4—C5—C6—N4 0.4 (3) C2—C3—N2—C1 0.3 (2)
N2—C5—C6—N4 −179.50 (16) C2—C3—N2—C5 −179.20 (16)
O1—C8—C9—C10i 179.04 (17) C6—C5—N2—C1 154.15 (18)
C10—C8—C9—C10i 0.3 (3) C4—C5—N2—C1 −25.8 (3)
O1—C8—C10—C9i −178.97 (17) C6—C5—N2—C3 −26.4 (3)
C9—C8—C10—C9i −0.3 (3) C4—C5—N2—C3 153.65 (18)
O2—C11—C12—C13 178.57 (16) N4—C7—N3—C4 −0.3 (3)
C13ii—C11—C12—C13 −0.1 (3) C5—C4—N3—C7 1.2 (3)
C11—C12—C13—C11ii 0.1 (3) N3—C7—N4—C6 −0.4 (3)
N2—C1—N1—C2 0.7 (2) C5—C6—N4—C7 0.3 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1iii 0.82 1.96 2.764 (2) 168.
O2—H2A···N4iv 0.82 2.02 2.835 (2) 174.

Symmetry codes: (iii) x, y, z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5356).

References

  1. Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Clausen, H. F., Chevallier, M. S., Spackman, M. A. & Iversen, B. B. (2010). New J. Chem. 34, 193–199.
  3. Nieuwenhuyzen, M., Keirse, R., Shaw, B. & Vos, J. G. (1999). Acta Cryst. C55, 264–266.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043819/xu5356sup1.cif

e-67-o3073-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043819/xu5356Isup2.hkl

e-67-o3073-Isup2.hkl (107KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043819/xu5356Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES