Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3074–o3075. doi: 10.1107/S1600536811042930

(E)-1-(Thio­phen-2-yl)-3-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Thitipone Suwunwong b, Teerasak Anantapong c, Chatchanok Karalai b, Suchada Chantrapromma b,§
PMCID: PMC3247464  PMID: 22220082

Abstract

There are two crystallograpically independent mol­ecules in the asymmetric unit of the title heteroaryl chalcone derivative, C16H16O4S, with slightly different conformations. The thienyl ring of one mol­ecule is disordered over two positions, with a refined site-occupancy ratio of 0.713 (5):0.287 (5). The mol­ecules are twisted: the dihedral angle between the thienyl and benzene rings is 9.72 (19)° in the ordered mol­ecule, and 3.8 (4) and 2.1 (8)° for the major and minor components, respectively, in the disordered mol­ecule. In both mol­ecules, all three substituted meth­oxy groups are coplanar with the benzene ring to which they are attached. In each mol­ecule, a weak intra­molecular C—H⋯O inter­action generates an S(6) ring motif. In the crystal structure, adjacent mol­ecules are linked into a three-dimensional network by weak C—H⋯O inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Fun et al. (2010, 2011); Suwunwong et al. (2009). For background to and applications of chalcones, see: Go et al. (2005); Liu et al. (2008); Ng et al. (2009); Ni et al. (2004); Suwunwong et al. (2011); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o3074-scheme1.jpg

Experimental

Crystal data

  • C16H16O4S

  • M r = 304.36

  • Orthorhombic, Inline graphic

  • a = 22.8482 (10) Å

  • b = 31.2117 (13) Å

  • c = 3.9876 (2) Å

  • V = 2843.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.60 × 0.06 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.869, T max = 0.988

  • 20029 measured reflections

  • 8085 independent reflections

  • 5348 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.178

  • S = 1.01

  • 8085 reflections

  • 402 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983), with 3389 Friedel pairs

  • Flack parameter: 0.09 (11)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042930/rz2650sup1.cif

e-67-o3074-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042930/rz2650Isup2.hkl

e-67-o3074-Isup2.hkl (395.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042930/rz2650Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2B⋯O3A 0.93 2.56 3.482 (10) 171
C6A—H6A⋯O4A 0.93 2.22 2.815 (4) 121
C6B—H6B⋯O4B 0.93 2.24 2.824 (4) 120
C15A—H15C⋯O1Bi 0.96 2.51 3.451 (5) 166
C15B—H15F⋯O1Aii 0.96 2.55 3.355 (5) 141
C16B—H16E⋯O3Biii 0.96 2.59 3.401 (4) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Thailand Research Fund (TRF) for a research grant (No. RSA 5280033) and Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Chalcones have been reported to be responsible for a variety of biological activities such as analgesic, anti-inflammatory, antibacterial and antimycotic (Go et al., 2005; Liu et al., 2008; Ni et al., 2004) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003) and tyrosinase inhibitory (Ng et al., 2009) properties. Our research on the fluorescent and biological studies of chalcones and heteroaryl chalcone derivatives (Chantrapromma et al., 2009; Suwunwong et al., 2009, 2011) led us to synthesize the title heteroaryl chalcone (I). (I) exhibits fluorescent property (Suwunwong et al., 2011) and possess moderate analgesic property. It was also tested for antibacterial activities but found to be inactive. Herein we report the crystal structure of (I).

There are two crystallographic independent molecules A and B in the asymmetric unit of (I) with different conformations of the methoxy group at para position or at atom C11 and also in bond angles (Fig. 1). The thienyl ring of molecule B is disordered over two orientations with the refined site-occupancy ratio of 0.713 (5):0.287 (5). The thienyl rings in the major and minor components are related by 180° rotation. The molecule of (I) is slightly twisted. The dihedral angle between the thienyl and benzene rings is 9.72 (19)° in molecule A whereas these values are 3.8 (4) and 2.1 (8)° for the major and minor components in the disordered molecule B. The central prop-2-en-1-one bridge (C5–C7/O1) in both molecules is slightly twisted as indicated by the torsion angle O1—C5—C6—C7 = 5.8 (6) and 6.6 (6)° in molecules A and B, respectively. The mean plane through this bridge makes dihedral angles of 8.9 (3) and 2.3 (2)° with the thienyl and benzene rings, respectively, in molecule A whereas the corresponding values are 4.2 (4) and 8.0 (3)° in molecule B for the major component, and 8.2 (8) and 8.0 (3)° for the minor component. In both molecules, all the three substituted methoxy groups are co-planar with the attached benzene with torsion angles C14—O2—C9—C10 = -5.3 (5)°; C15—O3—C11—C12 = 3.7 (5)° and C16—O4—C13—C12 = 0.3 (5)° in molecule A. The corresponding values are 0.6 (5), 178.0 (3) and 0.6 (5)° in molecule B. This also indicates that the methoxy group at the para position (or at atom C11) has different conformations as it points toward the methoxy group at the ortho position at atom C13 (in molecule A) whereas it points toward the ortho methoxy at atom C9 (in molecule B). In each molecule, intramolecular C—H···O weak interaction (Table 1) generates S(6) ring motif (Bernstein et al., 1995). The bond distances agree with the literature values (Allen et al., 1987) and are comparable with those observed in related structures (Chantrapromma et al., 2009; Fun et al., 2010, 2011; Suwunwong et al., 2009).

In the crystal packing (Fig. 2), adjacent molecules are linked into a three-dimensional network by weak C—H···O interactions (Table 1).

Experimental

The title compound was synthesized by the condensation of 2,4,6-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acethylthiophene (0.35 ml, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH (aq) (5 ml). After stirring for 3 h in ice bath at 278 K, the resulting pale-yellow solid was collected by filtration, washed with distilled water, dried in air and purified by recrystallization from acetone. Pale-yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from acetone–ethanol (1:1 v/v) by slow evaporation of the solvent at room temperature after several days; m.p. 381–382 K.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and methyne C atoms and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl groups. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.65 Å from C3 and the deepest hole is located at 0.29 Å from S1A. The thienyl ring of molecule B is disordered over two sites with refined site occupancies of 0.713 (5) and 0.287 (5). Initially SAME, DELU and SIMU restraints were used. In the final refinement, these restraints were removed. A total of 3389 Friedel pairs were used to determine the absolute structure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Open bonds show the minor component of the disordered thienyl ring.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis. Only the major component of disorder is shown. Weak C—H···O interactions are shown as dashed lines.

Crystal data

C16H16O4S Dx = 1.422 Mg m3
Mr = 304.36 Melting point = 381–382 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 8085 reflections
a = 22.8482 (10) Å θ = 1.3–30.0°
b = 31.2117 (13) Å µ = 0.24 mm1
c = 3.9876 (2) Å T = 100 K
V = 2843.7 (2) Å3 Needle, pale yellow
Z = 8 0.60 × 0.06 × 0.05 mm
F(000) = 1280

Data collection

Bruker APEXII CCD area-detector diffractometer 8085 independent reflections
Radiation source: sealed tube 5348 reflections with I > 2σ(I)
graphite Rint = 0.065
φ and ω scans θmax = 30.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −27→32
Tmin = 0.869, Tmax = 0.988 k = −43→40
20029 measured reflections l = −5→5

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0951P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
8085 reflections Δρmax = 1.08 e Å3
402 parameters Δρmin = −0.56 e Å3
1 restraint Absolute structure: Flack (1983), with 3389 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (11)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.13970 (4) 0.41398 (3) 1.0329 (3) 0.0270 (2)
O1A 0.21057 (10) 0.48128 (7) 0.7262 (8) 0.0228 (6)
O2A 0.27887 (11) 0.61480 (7) 0.4202 (7) 0.0213 (6)
O3A 0.19621 (10) 0.75129 (7) 0.6341 (7) 0.0206 (6)
O4A 0.09780 (10) 0.62191 (7) 0.9862 (7) 0.0211 (6)
C1A 0.07345 (15) 0.40255 (11) 1.2033 (10) 0.0217 (8)
H1A 0.0622 0.3752 1.2684 0.026*
C2A 0.03841 (16) 0.43786 (10) 1.2349 (11) 0.0241 (8)
H2A 0.0005 0.4367 1.3198 0.029*
C3A 0.06544 (15) 0.47698 (12) 1.1249 (10) 0.0236 (8)
H3A 0.0483 0.5040 1.1312 0.028*
C4A 0.12232 (15) 0.46779 (10) 1.0057 (10) 0.0192 (7)
C5A 0.16654 (15) 0.49669 (10) 0.8497 (10) 0.0198 (7)
C6A 0.15415 (15) 0.54312 (10) 0.8687 (10) 0.0209 (8)
H6A 0.1214 0.5529 0.9841 0.025*
C7A 0.19013 (15) 0.57103 (10) 0.7198 (10) 0.0187 (7)
H7A 0.2213 0.5587 0.6051 0.022*
C8A 0.18848 (15) 0.61784 (10) 0.7077 (10) 0.0166 (7)
C9A 0.23464 (15) 0.64009 (10) 0.5441 (10) 0.0175 (7)
C10A 0.23602 (15) 0.68428 (10) 0.5233 (10) 0.0177 (7)
H10A 0.2669 0.6980 0.4162 0.021*
C11A 0.19052 (15) 0.70813 (10) 0.6647 (10) 0.0170 (7)
C12A 0.14394 (15) 0.68798 (10) 0.8199 (10) 0.0190 (7)
H12A 0.1135 0.7040 0.9108 0.023*
C13A 0.14324 (14) 0.64351 (10) 0.8385 (10) 0.0185 (7)
C14A 0.32476 (14) 0.63633 (10) 0.2398 (10) 0.0190 (7)
H14A 0.3511 0.6155 0.1470 0.029*
H14B 0.3458 0.6548 0.3900 0.029*
H14C 0.3080 0.6531 0.0619 0.029*
C15A 0.15164 (15) 0.77720 (10) 0.7938 (11) 0.0208 (8)
H15A 0.1602 0.8070 0.7584 0.031*
H15B 0.1511 0.7713 1.0300 0.031*
H15C 0.1141 0.7705 0.6989 0.031*
C16A 0.05059 (16) 0.64661 (11) 1.1205 (11) 0.0232 (8)
H16A 0.0221 0.6278 1.2182 0.035*
H16B 0.0327 0.6629 0.9441 0.035*
H16C 0.0653 0.6657 1.2892 0.035*
S1B 0.42377 (10) 0.79935 (8) 1.2577 (7) 0.0198 (5) 0.713 (5)
O1B 0.52996 (11) 0.74766 (7) 1.3193 (8) 0.0283 (7)
O2B 0.65708 (9) 0.63419 (7) 1.2581 (7) 0.0199 (6)
O3B 0.62447 (10) 0.49871 (7) 0.7051 (7) 0.0192 (5)
O4B 0.47249 (10) 0.60034 (7) 0.8092 (7) 0.0194 (5)
C1B 0.3535 (4) 0.8012 (3) 1.105 (2) 0.0191 (18) 0.713 (5)
H1B 0.3290 0.8248 1.1252 0.023* 0.713 (5)
C2B 0.3376 (4) 0.7629 (3) 0.947 (3) 0.027 (2) 0.713 (5)
H2B 0.3018 0.7578 0.8433 0.032* 0.713 (5)
C3B 0.3838 (5) 0.7331 (4) 0.968 (3) 0.032 (3) 0.713 (5)
H3B 0.3804 0.7050 0.8923 0.038* 0.713 (5)
S1X 0.3779 (3) 0.7288 (2) 0.9029 (17) 0.0168 (13)* 0.287 (5)
C1X 0.3356 (11) 0.7722 (7) 0.978 (7) 0.013 (5)* 0.287 (5)
H1BX 0.2977 0.7753 0.8964 0.015* 0.287 (5)
C2X 0.3631 (11) 0.8023 (9) 1.170 (6) 0.018 (6)* 0.287 (5)
H2BX 0.3451 0.8268 1.2552 0.022* 0.287 (5)
C3X 0.4244 (12) 0.7909 (7) 1.225 (7) 0.014 (6)* 0.287 (5)
H3BX 0.4524 0.8086 1.3225 0.017* 0.287 (5)
C4B 0.43447 (15) 0.74896 (10) 1.1089 (10) 0.0189 (7)
C5B 0.49125 (15) 0.72746 (10) 1.1768 (10) 0.0195 (8)
C6B 0.49764 (15) 0.68308 (10) 1.0567 (11) 0.0213 (8)
H6B 0.4682 0.6704 0.9301 0.026*
C7B 0.54678 (15) 0.66094 (10) 1.1323 (10) 0.0200 (8)
H7B 0.5731 0.6754 1.2698 0.024*
C8B 0.56499 (15) 0.61804 (9) 1.0324 (10) 0.0175 (7)
C9B 0.62300 (16) 0.60488 (10) 1.0981 (10) 0.0188 (7)
C10B 0.64515 (15) 0.56527 (10) 0.9991 (11) 0.0192 (7)
H10B 0.6836 0.5575 1.0465 0.023*
C11B 0.60766 (15) 0.53768 (10) 0.8260 (10) 0.0182 (7)
C12B 0.54957 (14) 0.54812 (10) 0.7577 (10) 0.0176 (7)
H12B 0.5253 0.5291 0.6446 0.021*
C13B 0.52869 (15) 0.58828 (11) 0.8645 (10) 0.0184 (7)
C14B 0.71693 (15) 0.62351 (11) 1.3201 (11) 0.0239 (8)
H14D 0.7362 0.6474 1.4246 0.036*
H14E 0.7360 0.6169 1.1117 0.036*
H14F 0.7188 0.5991 1.4657 0.036*
C15B 0.68437 (15) 0.48626 (11) 0.7563 (12) 0.0270 (9)
H15D 0.6916 0.4596 0.6443 0.040*
H15E 0.6917 0.4830 0.9920 0.040*
H15F 0.7098 0.5079 0.6669 0.040*
C16B 0.43513 (15) 0.57035 (11) 0.6405 (10) 0.0209 (8)
H16D 0.3961 0.5817 0.6297 0.031*
H16E 0.4348 0.5438 0.7615 0.031*
H16F 0.4495 0.5655 0.4174 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0279 (5) 0.0170 (4) 0.0359 (6) −0.0005 (4) 0.0025 (5) 0.0010 (4)
O1A 0.0172 (11) 0.0159 (11) 0.0354 (17) 0.0015 (9) 0.0028 (12) −0.0011 (11)
O2A 0.0188 (12) 0.0160 (11) 0.0290 (15) 0.0019 (9) 0.0044 (11) 0.0041 (10)
O3A 0.0194 (12) 0.0099 (10) 0.0326 (16) 0.0006 (9) 0.0018 (11) 0.0029 (10)
O4A 0.0174 (12) 0.0135 (11) 0.0324 (16) −0.0022 (9) 0.0064 (12) −0.0005 (11)
C1A 0.0233 (17) 0.0186 (16) 0.023 (2) −0.0046 (14) 0.0012 (16) 0.0030 (14)
C2A 0.0229 (17) 0.0171 (16) 0.032 (2) −0.0014 (13) 0.0067 (18) 0.0011 (16)
C3A 0.0213 (18) 0.0237 (17) 0.026 (2) −0.0096 (14) 0.0046 (16) 0.0041 (15)
C4A 0.0231 (17) 0.0125 (14) 0.0219 (19) −0.0005 (12) −0.0008 (16) −0.0015 (14)
C5A 0.0195 (17) 0.0135 (15) 0.026 (2) 0.0001 (12) −0.0029 (16) −0.0021 (14)
C6A 0.0208 (17) 0.0131 (15) 0.029 (2) 0.0009 (12) 0.0005 (16) −0.0023 (14)
C7A 0.0206 (16) 0.0141 (14) 0.0214 (19) 0.0022 (12) 0.0010 (15) 0.0019 (15)
C8A 0.0159 (15) 0.0132 (14) 0.0207 (19) −0.0015 (12) −0.0011 (14) −0.0012 (13)
C9A 0.0201 (16) 0.0141 (14) 0.0181 (18) 0.0018 (12) −0.0025 (15) 0.0027 (14)
C10A 0.0186 (16) 0.0145 (14) 0.0199 (18) −0.0024 (12) −0.0009 (15) 0.0019 (14)
C11A 0.0148 (15) 0.0098 (14) 0.026 (2) 0.0010 (12) −0.0032 (14) 0.0013 (13)
C12A 0.0163 (15) 0.0144 (15) 0.026 (2) 0.0043 (12) −0.0027 (15) 0.0001 (14)
C13A 0.0123 (15) 0.0177 (15) 0.026 (2) −0.0050 (12) −0.0013 (14) 0.0003 (14)
C14A 0.0170 (16) 0.0170 (15) 0.023 (2) 0.0005 (12) 0.0005 (16) 0.0023 (15)
C15A 0.0229 (17) 0.0099 (14) 0.030 (2) 0.0017 (12) −0.0045 (16) 0.0019 (15)
C16A 0.0217 (18) 0.0180 (16) 0.030 (2) −0.0017 (13) 0.0027 (16) −0.0041 (15)
S1B 0.0189 (8) 0.0084 (8) 0.0322 (10) 0.0019 (7) 0.0018 (7) −0.0026 (8)
O1B 0.0207 (12) 0.0134 (11) 0.051 (2) 0.0005 (9) −0.0075 (14) −0.0025 (12)
O2B 0.0140 (11) 0.0120 (10) 0.0339 (16) −0.0022 (8) −0.0061 (12) −0.0020 (11)
O3B 0.0193 (12) 0.0106 (10) 0.0276 (15) 0.0017 (8) −0.0013 (11) 0.0009 (10)
O4B 0.0166 (11) 0.0112 (10) 0.0304 (16) −0.0005 (8) −0.0018 (11) −0.0001 (10)
C1B 0.016 (4) 0.020 (3) 0.022 (5) 0.005 (2) −0.004 (3) 0.005 (3)
C2B 0.027 (4) 0.020 (4) 0.033 (5) −0.004 (3) 0.003 (3) −0.008 (4)
C3B 0.044 (5) 0.021 (4) 0.031 (6) 0.004 (3) −0.007 (4) 0.001 (4)
C4B 0.0195 (17) 0.0149 (15) 0.022 (2) −0.0038 (13) 0.0001 (15) 0.0014 (14)
C5B 0.0176 (16) 0.0120 (15) 0.029 (2) −0.0003 (13) 0.0051 (15) 0.0019 (13)
C6B 0.0210 (17) 0.0118 (14) 0.031 (2) −0.0005 (12) −0.0013 (17) −0.0014 (16)
C7B 0.0179 (16) 0.0152 (15) 0.027 (2) −0.0043 (13) −0.0013 (15) −0.0005 (14)
C8B 0.0196 (16) 0.0113 (13) 0.0215 (18) −0.0004 (12) 0.0031 (15) −0.0009 (14)
C9B 0.0216 (17) 0.0143 (15) 0.020 (2) −0.0038 (13) 0.0010 (15) 0.0039 (13)
C10B 0.0184 (16) 0.0136 (15) 0.026 (2) −0.0001 (12) 0.0005 (16) 0.0022 (15)
C11B 0.0218 (17) 0.0103 (14) 0.022 (2) −0.0003 (12) 0.0023 (15) 0.0003 (13)
C12B 0.0196 (15) 0.0103 (13) 0.0229 (19) −0.0015 (12) −0.0013 (16) 0.0023 (14)
C13B 0.0198 (17) 0.0169 (15) 0.0184 (18) −0.0013 (13) 0.0021 (15) −0.0001 (14)
C14B 0.0178 (16) 0.0197 (16) 0.034 (2) −0.0041 (13) −0.0060 (17) 0.0000 (16)
C15B 0.0227 (18) 0.0125 (15) 0.046 (3) 0.0051 (13) −0.0004 (19) 0.0013 (18)
C16B 0.0190 (17) 0.0185 (16) 0.025 (2) −0.0040 (13) −0.0026 (15) 0.0000 (14)

Geometric parameters (Å, °)

S1A—C1A 1.697 (4) O2B—C14B 1.429 (4)
S1A—C4A 1.729 (3) O3B—C11B 1.364 (4)
O1A—C5A 1.219 (4) O3B—C15B 1.437 (4)
O2A—C9A 1.374 (4) O4B—C13B 1.356 (4)
O2A—C14A 1.438 (4) O4B—C16B 1.434 (4)
O3A—C11A 1.359 (4) C1B—C2B 1.399 (13)
O3A—C15A 1.448 (4) C1B—H1B 0.9300
O4A—C13A 1.371 (4) C2B—C3B 1.408 (15)
O4A—C16A 1.430 (4) C2B—H2B 0.9300
C1A—C2A 1.368 (5) C3B—C4B 1.380 (12)
C1A—H1A 0.9300 C3B—H3B 0.9300
C2A—C3A 1.437 (5) S1X—C4B 1.657 (7)
C2A—H2A 0.9300 S1X—C1X 1.69 (2)
C3A—C4A 1.413 (5) C1X—C2X 1.37 (3)
C3A—H3A 0.9300 C1X—H1BX 0.9300
C4A—C5A 1.491 (5) C2X—C3X 1.46 (3)
C5A—C6A 1.478 (4) C2X—H2BX 0.9300
C6A—C7A 1.337 (5) C3X—C4B 1.41 (2)
C6A—H6A 0.9300 C3X—H3BX 0.9300
C7A—C8A 1.462 (4) C4B—C5B 1.485 (5)
C7A—H7A 0.9300 C5B—C6B 1.473 (5)
C8A—C13A 1.408 (5) C6B—C7B 1.353 (5)
C8A—C9A 1.421 (5) C6B—H6B 0.9300
C9A—C10A 1.382 (4) C7B—C8B 1.458 (4)
C10A—C11A 1.397 (5) C7B—H7B 0.9300
C10A—H10A 0.9300 C8B—C9B 1.412 (5)
C11A—C12A 1.383 (5) C8B—C13B 1.414 (5)
C12A—C13A 1.390 (4) C9B—C10B 1.393 (5)
C12A—H12A 0.9300 C10B—C11B 1.397 (5)
C14A—H14A 0.9600 C10B—H10B 0.9300
C14A—H14B 0.9600 C11B—C12B 1.394 (5)
C14A—H14C 0.9600 C12B—C13B 1.407 (5)
C15A—H15A 0.9600 C12B—H12B 0.9300
C15A—H15B 0.9600 C14B—H14D 0.9600
C15A—H15C 0.9600 C14B—H14E 0.9600
C16A—H16A 0.9600 C14B—H14F 0.9600
C16A—H16B 0.9600 C15B—H15D 0.9600
C16A—H16C 0.9600 C15B—H15E 0.9600
S1B—C4B 1.699 (4) C15B—H15F 0.9600
S1B—C1B 1.717 (10) C16B—H16D 0.9600
O1B—C5B 1.226 (4) C16B—H16E 0.9600
O2B—C9B 1.360 (4) C16B—H16F 0.9600
C1A—S1A—C4A 91.40 (17) C1B—C2B—H2B 125.0
C9A—O2A—C14A 116.6 (3) C3B—C2B—H2B 125.0
C11A—O3A—C15A 116.5 (3) C4B—C3B—C2B 114.6 (9)
C13A—O4A—C16A 117.8 (3) C4B—C3B—H3B 122.7
C2A—C1A—S1A 112.9 (3) C2B—C3B—H3B 122.7
C2A—C1A—H1A 123.5 C4B—S1X—C1X 93.0 (9)
S1A—C1A—H1A 123.5 C2X—C1X—S1X 113 (2)
C1A—C2A—C3A 113.9 (3) C2X—C1X—H1BX 123.6
C1A—C2A—H2A 123.1 S1X—C1X—H1BX 123.6
C3A—C2A—H2A 123.1 C1X—C2X—C3X 111 (2)
C4A—C3A—C2A 109.0 (3) C1X—C2X—H2BX 124.6
C4A—C3A—H3A 125.5 C3X—C2X—H2BX 124.6
C2A—C3A—H3A 125.5 C4B—C3X—C2X 110 (2)
C3A—C4A—C5A 129.9 (3) C4B—C3X—H3BX 125.2
C3A—C4A—S1A 112.8 (3) C2X—C3X—H3BX 125.2
C5A—C4A—S1A 117.3 (3) C3B—C4B—C3X 109.3 (12)
O1A—C5A—C6A 124.4 (3) C3B—C4B—C5B 130.2 (6)
O1A—C5A—C4A 119.3 (3) C3X—C4B—C5B 120.2 (12)
C6A—C5A—C4A 116.2 (3) C3X—C4B—S1X 112.9 (12)
C7A—C6A—C5A 119.9 (3) C5B—C4B—S1X 126.9 (4)
C7A—C6A—H6A 120.1 C3B—C4B—S1B 110.7 (5)
C5A—C6A—H6A 120.1 C5B—C4B—S1B 118.7 (3)
C6A—C7A—C8A 130.5 (3) S1X—C4B—S1B 114.4 (3)
C6A—C7A—H7A 114.7 O1B—C5B—C6B 124.3 (3)
C8A—C7A—H7A 114.7 O1B—C5B—C4B 118.8 (3)
C13A—C8A—C9A 115.9 (3) C6B—C5B—C4B 116.9 (3)
C13A—C8A—C7A 125.1 (3) C7B—C6B—C5B 119.4 (3)
C9A—C8A—C7A 119.0 (3) C7B—C6B—H6B 120.3
O2A—C9A—C10A 122.3 (3) C5B—C6B—H6B 120.3
O2A—C9A—C8A 115.5 (3) C6B—C7B—C8B 130.2 (3)
C10A—C9A—C8A 122.1 (3) C6B—C7B—H7B 114.9
C9A—C10A—C11A 119.4 (3) C8B—C7B—H7B 114.9
C9A—C10A—H10A 120.3 C9B—C8B—C13B 116.6 (3)
C11A—C10A—H10A 120.3 C9B—C8B—C7B 119.0 (3)
O3A—C11A—C12A 124.4 (3) C13B—C8B—C7B 124.4 (3)
O3A—C11A—C10A 114.9 (3) O2B—C9B—C10B 121.5 (3)
C12A—C11A—C10A 120.7 (3) O2B—C9B—C8B 115.4 (3)
C11A—C12A—C13A 119.1 (3) C10B—C9B—C8B 123.1 (3)
C11A—C12A—H12A 120.4 C9B—C10B—C11B 117.7 (3)
C13A—C12A—H12A 120.4 C9B—C10B—H10B 121.2
O4A—C13A—C12A 121.5 (3) C11B—C10B—H10B 121.2
O4A—C13A—C8A 115.8 (3) O3B—C11B—C12B 114.1 (3)
C12A—C13A—C8A 122.7 (3) O3B—C11B—C10B 123.5 (3)
O2A—C14A—H14A 109.5 C12B—C11B—C10B 122.4 (3)
O2A—C14A—H14B 109.5 C11B—C12B—C13B 118.2 (3)
H14A—C14A—H14B 109.5 C11B—C12B—H12B 120.9
O2A—C14A—H14C 109.5 C13B—C12B—H12B 120.9
H14A—C14A—H14C 109.5 O4B—C13B—C12B 121.3 (3)
H14B—C14A—H14C 109.5 O4B—C13B—C8B 116.7 (3)
O3A—C15A—H15A 109.5 C12B—C13B—C8B 122.0 (3)
O3A—C15A—H15B 109.5 O2B—C14B—H14D 109.5
H15A—C15A—H15B 109.5 O2B—C14B—H14E 109.5
O3A—C15A—H15C 109.5 H14D—C14B—H14E 109.5
H15A—C15A—H15C 109.5 O2B—C14B—H14F 109.5
H15B—C15A—H15C 109.5 H14D—C14B—H14F 109.5
O4A—C16A—H16A 109.5 H14E—C14B—H14F 109.5
O4A—C16A—H16B 109.5 O3B—C15B—H15D 109.5
H16A—C16A—H16B 109.5 O3B—C15B—H15E 109.5
O4A—C16A—H16C 109.5 H15D—C15B—H15E 109.5
H16A—C16A—H16C 109.5 O3B—C15B—H15F 109.5
H16B—C16A—H16C 109.5 H15D—C15B—H15F 109.5
C4B—S1B—C1B 92.4 (4) H15E—C15B—H15F 109.5
C9B—O2B—C14B 118.2 (3) O4B—C16B—H16D 109.5
C11B—O3B—C15B 117.3 (3) O4B—C16B—H16E 109.5
C13B—O4B—C16B 117.3 (3) H16D—C16B—H16E 109.5
C2B—C1B—S1B 112.0 (7) O4B—C16B—H16F 109.5
C2B—C1B—H1B 124.0 H16D—C16B—H16F 109.5
S1B—C1B—H1B 124.0 H16E—C16B—H16F 109.5
C1B—C2B—C3B 110.0 (10)
C4A—S1A—C1A—C2A 1.0 (3) C2B—C3B—C4B—S1B 6.2 (11)
S1A—C1A—C2A—C3A −1.3 (5) C2X—C3X—C4B—C3B 3(2)
C1A—C2A—C3A—C4A 0.9 (5) C2X—C3X—C4B—C5B −171.8 (15)
C2A—C3A—C4A—C5A 176.5 (4) C2X—C3X—C4B—S1X 8(2)
C2A—C3A—C4A—S1A −0.2 (5) C1X—S1X—C4B—C3B 51 (7)
C1A—S1A—C4A—C3A −0.5 (3) C1X—S1X—C4B—C3X −3.7 (16)
C1A—S1A—C4A—C5A −177.6 (3) C1X—S1X—C4B—C5B 176.0 (10)
C3A—C4A—C5A—O1A −171.1 (4) C1X—S1X—C4B—S1B −3.0 (10)
S1A—C4A—C5A—O1A 5.4 (5) C1B—S1B—C4B—C3B −4.2 (7)
C3A—C4A—C5A—C6A 11.1 (6) C1B—S1B—C4B—C5B −178.0 (4)
S1A—C4A—C5A—C6A −172.3 (3) C1B—S1B—C4B—S1X 1.1 (5)
O1A—C5A—C6A—C7A 5.8 (6) C3B—C4B—C5B—O1B −176.9 (7)
C4A—C5A—C6A—C7A −176.6 (4) C3X—C4B—C5B—O1B −3.9 (14)
C5A—C6A—C7A—C8A −178.5 (4) S1X—C4B—C5B—O1B 176.4 (5)
C6A—C7A—C8A—C13A −5.4 (7) S1B—C4B—C5B—O1B −4.6 (5)
C6A—C7A—C8A—C9A 176.6 (4) C3B—C4B—C5B—C6B 4.9 (9)
C14A—O2A—C9A—C10A −5.3 (5) C3X—C4B—C5B—C6B 177.9 (13)
C14A—O2A—C9A—C8A 177.2 (3) S1X—C4B—C5B—C6B −1.7 (6)
C13A—C8A—C9A—O2A 179.4 (3) S1B—C4B—C5B—C6B 177.3 (3)
C7A—C8A—C9A—O2A −2.4 (5) O1B—C5B—C6B—C7B 6.6 (6)
C13A—C8A—C9A—C10A 1.9 (5) C4B—C5B—C6B—C7B −175.3 (4)
C7A—C8A—C9A—C10A −179.9 (4) C5B—C6B—C7B—C8B −176.7 (4)
O2A—C9A—C10A—C11A −177.8 (4) C6B—C7B—C8B—C9B 169.3 (4)
C8A—C9A—C10A—C11A −0.5 (6) C6B—C7B—C8B—C13B −9.2 (7)
C15A—O3A—C11A—C12A 3.7 (5) C14B—O2B—C9B—C10B 0.6 (5)
C15A—O3A—C11A—C10A −176.6 (3) C14B—O2B—C9B—C8B −177.6 (3)
C9A—C10A—C11A—O3A 179.4 (3) C13B—C8B—C9B—O2B 179.6 (3)
C9A—C10A—C11A—C12A −1.0 (6) C7B—C8B—C9B—O2B 1.0 (5)
O3A—C11A—C12A—C13A −179.4 (3) C13B—C8B—C9B—C10B 1.5 (6)
C10A—C11A—C12A—C13A 1.0 (6) C7B—C8B—C9B—C10B −177.1 (4)
C16A—O4A—C13A—C12A 0.3 (5) O2B—C9B—C10B—C11B −177.9 (3)
C16A—O4A—C13A—C8A −179.5 (3) C8B—C9B—C10B—C11B 0.2 (6)
C11A—C12A—C13A—O4A −179.2 (4) C15B—O3B—C11B—C12B 178.0 (3)
C11A—C12A—C13A—C8A 0.6 (6) C15B—O3B—C11B—C10B −1.0 (5)
C9A—C8A—C13A—O4A 177.9 (3) C9B—C10B—C11B—O3B 177.6 (3)
C7A—C8A—C13A—O4A −0.2 (6) C9B—C10B—C11B—C12B −1.4 (6)
C9A—C8A—C13A—C12A −1.9 (5) O3B—C11B—C12B—C13B −178.2 (3)
C7A—C8A—C13A—C12A −180.0 (4) C10B—C11B—C12B—C13B 0.9 (6)
C4B—S1B—C1B—C2B 1.4 (8) C16B—O4B—C13B—C12B 0.6 (5)
S1B—C1B—C2B—C3B 1.8 (12) C16B—O4B—C13B—C8B −179.7 (3)
C1B—C2B—C3B—C4B −5.1 (14) C11B—C12B—C13B—O4B −179.4 (3)
C4B—S1X—C1X—C2X −2(2) C11B—C12B—C13B—C8B 0.9 (6)
S1X—C1X—C2X—C3X 7(3) C9B—C8B—C13B—O4B 178.2 (3)
C1X—C2X—C3X—C4B −9(3) C7B—C8B—C13B—O4B −3.2 (6)
C2B—C3B—C4B—C3X 5.4 (16) C9B—C8B—C13B—C12B −2.1 (6)
C2B—C3B—C4B—C5B 179.0 (7) C7B—C8B—C13B—C12B 176.5 (4)
C2B—C3B—C4B—S1X −121 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2B—H2B···O3A 0.93 2.56 3.482 (10) 171
C6A—H6A···O4A 0.93 2.22 2.815 (4) 121
C6B—H6B···O4B 0.93 2.24 2.824 (4) 120
C15A—H15C···O1Bi 0.96 2.51 3.451 (5) 166
C15B—H15F···O1Aii 0.96 2.55 3.355 (5) 141
C16B—H16E···O3Biii 0.96 2.59 3.401 (4) 142

Symmetry codes: (i) x−1/2, −y+3/2, z−1; (ii) −x+1, −y+1, z−1/2; (iii) −x+1, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2650).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. [DOI] [PMC free article] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Fun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789–o2790. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559–o2560. [DOI] [PMC free article] [PubMed]
  9. Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.
  10. Liu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681–1687. [DOI] [PubMed]
  11. Ng, L.-T., Ko, H.-H. & Lu, T.-M. (2009). Bioorg. Med. Chem. 17, 4360–4366. [DOI] [PubMed]
  12. Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669–1691.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap. 65, 890–897.
  16. Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576. [DOI] [PMC free article] [PubMed]
  17. Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042930/rz2650sup1.cif

e-67-o3074-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042930/rz2650Isup2.hkl

e-67-o3074-Isup2.hkl (395.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811042930/rz2650Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES