Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3094. doi: 10.1107/S1600536811044114

1,4-Bis(4-tert-but­ylbenz­yl)piperazine

Li-Juan Luo a, Jian-Quan Weng b,*
PMCID: PMC3247480  PMID: 22220098

Abstract

The complete mol­ecule of the title compound, C26H38N2, is generated by a crystallographic inversion centre. The piperazine ring adopts a chair conformation with pseudo-equatorial substituents. In the crystal, mol­ecules inter­act only by van der Waals forces.

Related literature

For related structures, see: Ma et al. (2007); Liu et al. (2011).graphic file with name e-67-o3094-scheme1.jpg

Experimental

Crystal data

  • C26H38N2

  • M r = 378.58

  • Triclinic, Inline graphic

  • a = 6.162 (4) Å

  • b = 9.616 (5) Å

  • c = 10.656 (7) Å

  • α = 114.279 (19)°

  • β = 92.42 (5)°

  • γ = 96.50 (4)°

  • V = 569.1 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.08 mm

Data collection

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.985, T max = 0.995

  • 6003 measured reflections

  • 2686 independent reflections

  • 1481 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.099

  • S = 1.01

  • 2686 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044114/hb6451sup1.cif

e-67-o3094-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044114/hb6451Isup2.hkl

e-67-o3094-Isup2.hkl (131.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044114/hb6451Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Experimental

Piperazine (50 mmol), dissolved in 20 ml 96% of ethanol, was added dropwise to a stirred solution of tert-butyl benzyl (50 mmol) at reflux. The mixture was stirred for 8 h at reflux, TLC monitored. The mixture was stirred overnight at room temperature, evaporated in vacuum and the residue was purified by recrystallization from ethanol to give the title compound, (I). Colourless prisms of (I) were grown from ethanol.

Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing for (I).

Crystal data

C26H38N2 Z = 1
Mr = 378.58 F(000) = 208
Triclinic, P1 Dx = 1.105 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.162 (4) Å Cell parameters from 1980 reflections
b = 9.616 (5) Å θ = 2.1–27.9°
c = 10.656 (7) Å µ = 0.06 mm1
α = 114.279 (19)° T = 113 K
β = 92.42 (5)° Prism, colorless
γ = 96.50 (4)° 0.24 × 0.20 × 0.08 mm
V = 569.1 (6) Å3

Data collection

Rigaku Saturn724 CCD diffractometer 2686 independent reflections
Radiation source: rotating anode 1481 reflections with I > 2σ(I)
multilayer Rint = 0.041
Detector resolution: 14.22 pixels mm-1 θmax = 27.9°, θmin = 2.1°
ω and φ scans h = −8→7
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −12→12
Tmin = 0.985, Tmax = 0.995 l = −13→14
6003 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3
2686 reflections (Δ/σ)max < 0.001
130 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 1.04698 (14) 0.10740 (11) 0.64238 (9) 0.0276 (3)
C1 1.19772 (18) 0.10329 (14) 0.53912 (12) 0.0304 (3)
H1A 1.3503 0.1354 0.5835 0.036*
H1B 1.1644 0.1765 0.4999 0.036*
C2 0.82344 (17) 0.05712 (14) 0.57527 (11) 0.0296 (3)
H2A 0.7838 0.1295 0.5366 0.036*
H2B 0.7205 0.0582 0.6444 0.036*
C3 1.0687 (2) 0.26252 (14) 0.75487 (12) 0.0349 (3)
H3A 1.0114 0.3328 0.7192 0.042*
H3B 1.2260 0.3006 0.7869 0.042*
C4 0.94701 (19) 0.26622 (13) 0.87580 (11) 0.0283 (3)
C5 0.7673 (2) 0.34155 (14) 0.91236 (12) 0.0354 (3)
H5 0.7138 0.3899 0.8579 0.042*
C6 0.66197 (19) 0.34862 (14) 1.02736 (12) 0.0325 (3)
H6 0.5377 0.4012 1.0492 0.039*
C7 0.73370 (17) 0.28090 (12) 1.11086 (11) 0.0244 (3)
C8 0.91275 (17) 0.20106 (13) 1.07092 (12) 0.0301 (3)
H8 0.9643 0.1500 1.1235 0.036*
C9 1.01657 (18) 0.19463 (14) 0.95659 (12) 0.0316 (3)
H9 1.1385 0.1398 0.9328 0.038*
C10 0.62717 (18) 0.28918 (14) 1.24015 (12) 0.0292 (3)
C11 0.5127 (2) 0.12960 (15) 1.21512 (15) 0.0519 (4)
H11A 0.4028 0.0923 1.1350 0.078*
H11B 0.4404 0.1356 1.2970 0.078*
H11C 0.6212 0.0584 1.1973 0.078*
C12 0.45875 (19) 0.40197 (14) 1.28026 (12) 0.0360 (3)
H12A 0.5309 0.5053 1.2976 0.054*
H12B 0.3964 0.4045 1.3641 0.054*
H12C 0.3413 0.3683 1.2047 0.054*
C13 0.8046 (2) 0.34597 (17) 1.36335 (12) 0.0448 (4)
H13A 0.9099 0.2723 1.3441 0.067*
H13B 0.7356 0.3547 1.4469 0.067*
H13C 0.8814 0.4470 1.3774 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0278 (5) 0.0292 (6) 0.0238 (5) 0.0025 (4) 0.0087 (4) 0.0089 (5)
C1 0.0275 (6) 0.0365 (8) 0.0272 (6) 0.0022 (5) 0.0094 (5) 0.0132 (6)
C2 0.0304 (7) 0.0347 (7) 0.0274 (6) 0.0078 (5) 0.0107 (5) 0.0151 (6)
C3 0.0433 (7) 0.0305 (7) 0.0271 (7) −0.0004 (6) 0.0118 (6) 0.0090 (6)
C4 0.0344 (7) 0.0234 (6) 0.0229 (6) −0.0004 (5) 0.0076 (5) 0.0061 (5)
C5 0.0478 (8) 0.0366 (8) 0.0275 (7) 0.0138 (6) 0.0079 (6) 0.0167 (6)
C6 0.0359 (7) 0.0354 (7) 0.0291 (7) 0.0147 (6) 0.0092 (5) 0.0134 (6)
C7 0.0269 (6) 0.0216 (6) 0.0204 (6) 0.0006 (5) 0.0029 (5) 0.0051 (5)
C8 0.0328 (7) 0.0318 (7) 0.0276 (6) 0.0060 (5) 0.0027 (5) 0.0139 (6)
C9 0.0297 (7) 0.0330 (7) 0.0312 (7) 0.0079 (5) 0.0099 (6) 0.0111 (6)
C10 0.0345 (7) 0.0302 (7) 0.0242 (6) 0.0061 (5) 0.0088 (5) 0.0118 (5)
C11 0.0698 (10) 0.0356 (8) 0.0532 (9) 0.0059 (7) 0.0367 (8) 0.0192 (7)
C12 0.0390 (7) 0.0395 (8) 0.0278 (7) 0.0099 (6) 0.0111 (6) 0.0105 (6)
C13 0.0510 (8) 0.0611 (10) 0.0255 (7) 0.0164 (7) 0.0073 (6) 0.0190 (7)

Geometric parameters (Å, °)

N1—C2 1.4575 (17) C7—C8 1.3968 (16)
N1—C1 1.4609 (17) C7—C10 1.5275 (18)
N1—C3 1.4665 (16) C8—C9 1.3821 (17)
C1—C2i 1.5089 (17) C8—H8 0.9500
C1—H1A 0.9900 C9—H9 0.9500
C1—H1B 0.9900 C10—C11 1.5251 (19)
C2—C1i 1.5090 (17) C10—C12 1.5321 (17)
C2—H2A 0.9900 C10—C13 1.540 (2)
C2—H2B 0.9900 C11—H11A 0.9800
C3—C4 1.5079 (18) C11—H11B 0.9800
C3—H3A 0.9900 C11—H11C 0.9800
C3—H3B 0.9900 C12—H12A 0.9800
C4—C5 1.3742 (17) C12—H12B 0.9800
C4—C9 1.3863 (17) C12—H12C 0.9800
C5—C6 1.3916 (18) C13—H13A 0.9800
C5—H5 0.9500 C13—H13B 0.9800
C6—C7 1.3855 (17) C13—H13C 0.9800
C6—H6 0.9500
C2—N1—C1 109.05 (10) C8—C7—C10 119.97 (11)
C2—N1—C3 111.16 (11) C9—C8—C7 121.48 (12)
C1—N1—C3 110.69 (10) C9—C8—H8 119.3
N1—C1—C2i 110.36 (10) C7—C8—H8 119.3
N1—C1—H1A 109.6 C8—C9—C4 121.58 (11)
C2i—C1—H1A 109.6 C8—C9—H9 119.2
N1—C1—H1B 109.6 C4—C9—H9 119.2
C2i—C1—H1B 109.6 C11—C10—C7 109.50 (10)
H1A—C1—H1B 108.1 C11—C10—C12 108.72 (11)
N1—C2—C1i 110.74 (11) C7—C10—C12 112.36 (11)
N1—C2—H2A 109.5 C11—C10—C13 109.56 (12)
C1i—C2—H2A 109.5 C7—C10—C13 109.51 (10)
N1—C2—H2B 109.5 C12—C10—C13 107.14 (11)
C1i—C2—H2B 109.5 C10—C11—H11A 109.5
H2A—C2—H2B 108.1 C10—C11—H11B 109.5
N1—C3—C4 112.51 (11) H11A—C11—H11B 109.5
N1—C3—H3A 109.1 C10—C11—H11C 109.5
C4—C3—H3A 109.1 H11A—C11—H11C 109.5
N1—C3—H3B 109.1 H11B—C11—H11C 109.5
C4—C3—H3B 109.1 C10—C12—H12A 109.5
H3A—C3—H3B 107.8 C10—C12—H12B 109.5
C5—C4—C9 117.25 (11) H12A—C12—H12B 109.5
C5—C4—C3 122.29 (12) C10—C12—H12C 109.5
C9—C4—C3 120.46 (11) H12A—C12—H12C 109.5
C4—C5—C6 121.51 (12) H12B—C12—H12C 109.5
C4—C5—H5 119.2 C10—C13—H13A 109.5
C6—C5—H5 119.2 C10—C13—H13B 109.5
C7—C6—C5 121.68 (11) H13A—C13—H13B 109.5
C7—C6—H6 119.2 C10—C13—H13C 109.5
C5—C6—H6 119.2 H13A—C13—H13C 109.5
C6—C7—C8 116.46 (11) H13B—C13—H13C 109.5
C6—C7—C10 123.57 (11)
C2—N1—C1—C2i −58.15 (14) C5—C6—C7—C10 178.35 (10)
C3—N1—C1—C2i 179.26 (9) C6—C7—C8—C9 2.03 (16)
C1—N1—C2—C1i 58.37 (14) C10—C7—C8—C9 −178.31 (10)
C3—N1—C2—C1i −179.32 (10) C7—C8—C9—C4 −0.42 (18)
C2—N1—C3—C4 68.92 (14) C5—C4—C9—C8 −1.27 (17)
C1—N1—C3—C4 −169.72 (9) C3—C4—C9—C8 177.64 (10)
N1—C3—C4—C5 −113.26 (14) C6—C7—C10—C11 111.43 (14)
N1—C3—C4—C9 67.89 (15) C8—C7—C10—C11 −68.21 (14)
C9—C4—C5—C6 1.30 (17) C6—C7—C10—C12 −9.49 (16)
C3—C4—C5—C6 −177.58 (11) C8—C7—C10—C12 170.87 (10)
C4—C5—C6—C7 0.36 (19) C6—C7—C10—C13 −128.42 (13)
C5—C6—C7—C8 −2.00 (17) C8—C7—C10—C13 51.94 (14)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6451).

References

  1. Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.
  2. Ma, H.-F., Jia, H.-S., Qian, Y., Wen, F. & Chen, B.-L. (2007). Acta Cryst. E63, o311–o312.
  3. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC Inc. The Woodlands, Texas, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044114/hb6451sup1.cif

e-67-o3094-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044114/hb6451Isup2.hkl

e-67-o3094-Isup2.hkl (131.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044114/hb6451Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES