Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3095. doi: 10.1107/S1600536811044539

A third polymorph of N,N′-bis­(pyridin-2-yl)benzene-1,4-diamine

Barbara Wicher a, Maria Gdaniec a,*
PMCID: PMC3247481  PMID: 22220099

Abstract

A third polymorph of the title compound, C16H14N4, has been obtained. The mol­ecule adopts a non-planar conformation with an E configuration at the two partially double exo C N bonds of the 2-pyridyl­amine units. Like in the triclinic form [Bensemann et al. (2002). New J. Chem. 26, 448–456], the recognition process between 2-pyridyl­amine units takes place through formation of a cyclic R 2 2(8) hydrogen-bond motif, leading to the creation of tapes parallel to [001].

Related literature

For the structures of the ortho­rhom­bic and triclinic polymorphs of N,N′-di(pyridin-2-yl)benzene-1,4-diamine, see: Bensemann et al. (2002).graphic file with name e-67-o3095-scheme1.jpg

Experimental

Crystal data

  • C16H14N4

  • M r = 262.31

  • Monoclinic, Inline graphic

  • a = 7.2534 (2) Å

  • b = 20.8270 (6) Å

  • c = 9.0681 (3) Å

  • β = 106.746 (4)°

  • V = 1311.79 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 295 K

  • 0.2 × 0.2 × 0.05 mm

Data collection

  • Oxford Diffraction SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.799, T max = 1.000

  • 10413 measured reflections

  • 2398 independent reflections

  • 2221 reflections with I > 2/s(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.094

  • S = 1.07

  • 2398 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044539/rz2657sup1.cif

e-67-o3095-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044539/rz2657Isup2.hkl

e-67-o3095-Isup2.hkl (117.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044539/rz2657Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7N⋯N16i 0.90 2.25 3.1423 (13) 175
N14—H14N⋯N2ii 0.90 2.12 3.0141 (14) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The compounds bearing two 2-pyridylamine groups separated by linkers can adopt either E,E, Z,Z or E,Z forms depending on the configuration of the partially double exo C≐ N bond of the 2-pyridylamine unit. In crystals the molecules in the E, E form tend to build one-dimensional networks via R22(8) synthons generated between self-complementary 2-pyridylamine groups. In turn, the Z,Z form generates the C(4) catemer motif that can lead to the formation of one-, two- and three-dimensional frameworks (Bensemann et al., 2002). These compounds are known to exhibit conformational polymorphism and for N,N'-di(pyridin-2-yl)benzene-1,4-diamine two polymorphic forms were identified. In the orthorhombic form (Pbca, Z'=0.5), obtained by crystallization from acetonitrile, the molecules are nonplanar and adopt the Z,Z form. Hydrogen bonds between 2-pyridylamine groups generate catemeric motifs that assemble molecules into a two-dimensional framework. In the triclinic P1 polymorph, obtained by crystallization from methanol, there are two symmetry independent molecules, each in the E,E form and located around inversion center. These molecules form tapes via strongly nonplanar R22(8) motif generated by N—H···N hydrogen bonds (Bensemann et al., 2002).

Recently, during an attempt to cocrystallize N,N'-di(pyridin-2-yl)benzene-1,4-diamine with pyrazine from 2-butanone, a new monoclinic polymorph of N,N'-di(pyridin-2-yl)benzene-1,4-diamine was obtained. When crystallization was repeated from 2-butanone without addition of pyrazine the triclinic polymorph was formed.

In the new monoclinic polymorph the molecules adopt the E,E form and are assembled into tapes via strongly non-planar R22(8) hydrogen-bond motif. The overall shape of the tapes and their crystal packing are different from the arrangement found in the triclinic polymorph. As shown in Fig. 2a, the hydrogen-bonded tapes extended along [0 0 1] are grouped into pairs, with no specific interactions occurring between the two tapes, and these pairs of tapes are further arranged in a herring-bone manner (Fig. 2b).

The three polymorphs of N,N'-di(pyridin-2-yl)benzene-1,4-diamine have identical or very similar melting points: 478–479 K for the orthorhombic and triclinic polymorphs and 479 K for the monoclinic form. The calculated crystal densities are also similar: 1.335, 1.314 and 1.328 g cm-3 for orthorhombic, triclinic and monoclinic forms, respectively.

Experimental

N,N'-Di(pyridin-2-yl)benzene-1,4-diamine was prepared according to the published procedure (Bensemann et al., 2002). N,N'-Di(pyridin-2-yl)benzene-1,4-diamine (0.03 g, 0.11 mmol) and pyrazine (0.01 g, 0.11 mmol) were dissolved in 5 ml of 2-butanone and placed in a glass vial. After a few days colourless, plate-shaped crystals with a melting point of 479 K were obtained.

Refinement

H atoms of the N—H groups were located in difference electron-density maps. N—H bond lengths were standardized to 0.90 Å and Uiso(H) values were constrained to 1.2Ueq(N). All other H atoms were initially identified in difference maps but were placed at calculated positions with C—H = 0.93 Å, and were refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

: The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level.

Fig. 2.

Fig. 2.

: Crystal packing in the monoclinic polymorph of the title compound: (a) a pair of hydrogen bonded tapes extended along [0 0 1] and (b) herring-bone packing of the pairs of tapes (one pair is show with a black rhomboid). Hydrogen bonds are shown with dashed lines.

Crystal data

C16H14N4 F(000) = 552
Mr = 262.31 Dx = 1.328 Mg m3
Monoclinic, P21/c Melting point: 479 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 7.2534 (2) Å Cell parameters from 6262 reflections
b = 20.8270 (6) Å θ = 2.1–75.8°
c = 9.0681 (3) Å µ = 0.65 mm1
β = 106.746 (4)° T = 295 K
V = 1311.79 (7) Å3 Plate, colourless
Z = 4 0.2 × 0.2 × 0.05 mm

Data collection

Oxford Diffraction SuperNova diffractometer 2398 independent reflections
Radiation source: Nova Cu X-ray Source 2221 reflections with I > 2/s(I)
mirror Rint = 0.019
ω scans θmax = 68.2°, θmin = 6.4°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) h = −8→8
Tmin = 0.799, Tmax = 1.000 k = −25→25
10413 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2155P] where P = (Fo2 + 2Fc2)/3
2398 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.18091 (14) 0.15267 (5) 0.53715 (10) 0.0434 (2)
N7 0.34929 (14) 0.13813 (5) 0.36249 (10) 0.0453 (2)
H7N 0.4266 0.1142 0.4380 0.054*
N14 0.53458 (15) 0.12536 (5) −0.19925 (11) 0.0521 (3)
H14N 0.4314 0.1319 −0.2811 0.063*
N16 0.63876 (14) 0.06275 (5) −0.36845 (10) 0.0458 (2)
C1 0.18087 (15) 0.15794 (5) 0.38962 (12) 0.0382 (2)
C3 0.02222 (18) 0.17053 (6) 0.57328 (14) 0.0500 (3)
H3 0.0216 0.1663 0.6752 0.060*
C4 −0.13952 (18) 0.19473 (7) 0.46964 (16) 0.0572 (3)
H4 −0.2462 0.2071 0.5000 0.069*
C5 −0.13771 (18) 0.19995 (7) 0.31846 (16) 0.0581 (3)
H5 −0.2449 0.2161 0.2448 0.070*
C6 0.02097 (17) 0.18144 (6) 0.27640 (13) 0.0486 (3)
H6 0.0224 0.1844 0.1744 0.058*
C8 0.39192 (15) 0.13618 (5) 0.22059 (12) 0.0387 (3)
C9 0.34861 (17) 0.18587 (5) 0.11355 (13) 0.0435 (3)
H9 0.2842 0.2220 0.1332 0.052*
C10 0.40017 (17) 0.18215 (6) −0.02162 (12) 0.0445 (3)
H10 0.3685 0.2157 −0.0920 0.053*
C11 0.49825 (15) 0.12933 (5) −0.05437 (12) 0.0406 (3)
C12 0.54745 (16) 0.08080 (5) 0.05517 (13) 0.0425 (3)
H12 0.6177 0.0457 0.0380 0.051*
C13 0.49368 (16) 0.08396 (5) 0.18909 (13) 0.0419 (3)
H13 0.5262 0.0505 0.2597 0.050*
C15 0.67958 (16) 0.08914 (5) −0.22815 (12) 0.0418 (3)
C17 0.7754 (2) 0.02598 (6) −0.39897 (15) 0.0539 (3)
H17 0.7477 0.0068 −0.4955 0.065*
C18 0.9526 (2) 0.01483 (7) −0.29741 (16) 0.0603 (4)
H18 1.0408 −0.0122 −0.3228 0.072*
C19 0.99619 (18) 0.04509 (7) −0.15578 (15) 0.0574 (3)
H19 1.1173 0.0402 −0.0855 0.069*
C20 0.85928 (17) 0.08235 (7) −0.11991 (14) 0.0506 (3)
H20 0.8858 0.1028 −0.0249 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0485 (5) 0.0489 (5) 0.0360 (5) 0.0011 (4) 0.0174 (4) 0.0017 (4)
N7 0.0482 (5) 0.0582 (6) 0.0316 (5) 0.0106 (4) 0.0148 (4) 0.0050 (4)
N14 0.0529 (6) 0.0744 (7) 0.0294 (5) 0.0220 (5) 0.0123 (4) 0.0021 (4)
N16 0.0504 (6) 0.0555 (6) 0.0349 (5) 0.0066 (4) 0.0177 (4) 0.0011 (4)
C1 0.0431 (6) 0.0385 (5) 0.0343 (5) −0.0050 (4) 0.0132 (4) −0.0027 (4)
C3 0.0539 (7) 0.0573 (7) 0.0456 (6) −0.0034 (5) 0.0253 (5) −0.0006 (5)
C4 0.0427 (6) 0.0708 (9) 0.0636 (8) −0.0016 (6) 0.0242 (6) −0.0007 (6)
C5 0.0386 (6) 0.0760 (9) 0.0563 (8) −0.0020 (6) 0.0081 (5) 0.0052 (6)
C6 0.0438 (6) 0.0638 (7) 0.0365 (6) −0.0053 (5) 0.0090 (5) −0.0002 (5)
C8 0.0403 (6) 0.0454 (6) 0.0313 (5) 0.0006 (4) 0.0117 (4) −0.0013 (4)
C9 0.0497 (6) 0.0445 (6) 0.0392 (6) 0.0108 (5) 0.0174 (5) 0.0014 (5)
C10 0.0505 (6) 0.0488 (6) 0.0352 (6) 0.0122 (5) 0.0139 (5) 0.0080 (5)
C11 0.0409 (6) 0.0511 (6) 0.0302 (5) 0.0054 (5) 0.0108 (4) −0.0014 (4)
C12 0.0465 (6) 0.0415 (6) 0.0411 (6) 0.0078 (5) 0.0150 (5) −0.0023 (4)
C13 0.0474 (6) 0.0413 (6) 0.0377 (6) 0.0046 (5) 0.0134 (5) 0.0051 (4)
C15 0.0471 (6) 0.0488 (6) 0.0335 (5) 0.0057 (5) 0.0178 (5) 0.0048 (4)
C17 0.0630 (8) 0.0606 (7) 0.0455 (7) 0.0103 (6) 0.0273 (6) −0.0004 (5)
C18 0.0604 (8) 0.0689 (8) 0.0618 (8) 0.0204 (6) 0.0337 (7) 0.0123 (7)
C19 0.0445 (7) 0.0763 (9) 0.0538 (7) 0.0105 (6) 0.0180 (6) 0.0175 (6)
C20 0.0489 (7) 0.0660 (8) 0.0373 (6) 0.0036 (5) 0.0131 (5) 0.0023 (5)

Geometric parameters (Å, °)

N2—C3 1.3372 (15) C8—C13 1.3895 (15)
N2—C1 1.3422 (13) C8—C9 1.3916 (15)
N7—C1 1.3771 (14) C9—C10 1.3829 (15)
N7—C8 1.4079 (13) C9—H9 0.9300
N7—H7N 0.9001 C10—C11 1.3879 (16)
N14—C15 1.3793 (14) C10—H10 0.9300
N14—C11 1.4148 (14) C11—C12 1.3898 (16)
N14—H14N 0.9000 C12—C13 1.3799 (15)
N16—C15 1.3385 (14) C12—H12 0.9300
N16—C17 1.3427 (15) C13—H13 0.9300
C1—C6 1.3974 (16) C15—C20 1.3947 (16)
C3—C4 1.3706 (19) C17—C18 1.3682 (19)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.3790 (18) C18—C19 1.383 (2)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.3681 (18) C19—C20 1.3713 (18)
C5—H5 0.9300 C19—H19 0.9300
C6—H6 0.9300 C20—H20 0.9300
C3—N2—C1 117.93 (10) C8—C9—H9 119.6
C1—N7—C8 127.71 (9) C9—C10—C11 121.35 (10)
C1—N7—H7N 114.8 C9—C10—H10 119.3
C8—N7—H7N 115.3 C11—C10—H10 119.3
C15—N14—C11 124.37 (9) C10—C11—C12 117.74 (10)
C15—N14—H14N 115.1 C10—C11—N14 119.28 (10)
C11—N14—H14N 115.1 C12—C11—N14 122.89 (10)
C15—N16—C17 117.13 (10) C13—C12—C11 120.99 (10)
N2—C1—N7 114.09 (10) C13—C12—H12 119.5
N2—C1—C6 121.52 (10) C11—C12—H12 119.5
N7—C1—C6 124.39 (10) C12—C13—C8 121.32 (10)
N2—C3—C4 124.16 (11) C12—C13—H13 119.3
N2—C3—H3 117.9 C8—C13—H13 119.3
C4—C3—H3 117.9 N16—C15—N14 115.68 (10)
C3—C4—C5 117.34 (12) N16—C15—C20 122.22 (10)
C3—C4—H4 121.3 N14—C15—C20 122.07 (10)
C5—C4—H4 121.3 N16—C17—C18 124.33 (12)
C6—C5—C4 120.31 (12) N16—C17—H17 117.8
C6—C5—H5 119.8 C18—C17—H17 117.8
C4—C5—H5 119.8 C17—C18—C19 117.84 (12)
C5—C6—C1 118.73 (11) C17—C18—H18 121.1
C5—C6—H6 120.6 C19—C18—H18 121.1
C1—C6—H6 120.6 C20—C19—C18 119.38 (12)
C13—C8—C9 117.73 (10) C20—C19—H19 120.3
C13—C8—N7 118.69 (10) C18—C19—H19 120.3
C9—C8—N7 123.44 (10) C19—C20—C15 118.97 (12)
C10—C9—C8 120.81 (10) C19—C20—H20 120.5
C10—C9—H9 119.6 C15—C20—H20 120.5
C3—N2—C1—N7 −179.60 (10) C15—N14—C11—C10 157.24 (12)
C3—N2—C1—C6 0.15 (16) C15—N14—C11—C12 −26.30 (18)
C8—N7—C1—N2 178.25 (10) C10—C11—C12—C13 2.54 (17)
C8—N7—C1—C6 −1.49 (19) N14—C11—C12—C13 −173.97 (11)
C1—N2—C3—C4 −0.97 (18) C11—C12—C13—C8 −1.25 (17)
N2—C3—C4—C5 0.9 (2) C9—C8—C13—C12 −1.05 (17)
C3—C4—C5—C6 −0.1 (2) N7—C8—C13—C12 −176.94 (10)
C4—C5—C6—C1 −0.7 (2) C17—N16—C15—N14 −178.51 (11)
N2—C1—C6—C5 0.65 (18) C17—N16—C15—C20 3.62 (18)
N7—C1—C6—C5 −179.63 (12) C11—N14—C15—N16 145.45 (11)
C1—N7—C8—C13 −139.63 (12) C11—N14—C15—C20 −36.68 (18)
C1—N7—C8—C9 44.73 (17) C15—N16—C17—C18 −1.0 (2)
C13—C8—C9—C10 2.02 (17) N16—C17—C18—C19 −2.2 (2)
N7—C8—C9—C10 177.69 (11) C17—C18—C19—C20 2.9 (2)
C8—C9—C10—C11 −0.71 (18) C18—C19—C20—C15 −0.5 (2)
C9—C10—C11—C12 −1.57 (18) N16—C15—C20—C19 −2.90 (19)
C9—C10—C11—N14 175.07 (11) N14—C15—C20—C19 179.36 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H7N···N16i 0.90 2.25 3.1423 (13) 175
N14—H14N···N2ii 0.90 2.12 3.0141 (14) 175

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2657).

References

  1. Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Bensemann, I., Gdaniec, M. & Połoński, T. (2002). New J. Chem. 26, 448–456.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044539/rz2657sup1.cif

e-67-o3095-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044539/rz2657Isup2.hkl

e-67-o3095-Isup2.hkl (117.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044539/rz2657Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES