Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3099. doi: 10.1107/S1600536811043650

2-Amino-4-(2-chloro­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbonitrile ethanol monosolvate

Yan Qiao a, Lingqian Kong a,b,*, Guifang Chen a, Shengli Li a, Zhiqing Gao a
PMCID: PMC3247485  PMID: 22220103

Abstract

In the title compound, C16H13ClN2O2·C2H6O, the fused cyclo­hexene and pyran rings adopt envelope and flattened boat conformations, respectively. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the chromene and ethanol solvent mol­ecules into infinite chains along the c axis, and N—H⋯N hydrogen bonds link these chains into a three-dimensional framework. Weak C—H⋯π inter­actions are also present.

Related literature

For the background, see: Lokaj et al. (1990); Marco et al. (1993). For crystal structures similar to the title compound, see: Tu et al. (2001).graphic file with name e-67-o3099-scheme1.jpg

Experimental

Crystal data

  • C16H13ClN2O2·C2H6O

  • M r = 346.80

  • Triclinic, Inline graphic

  • a = 8.7610 (8) Å

  • b = 9.6281 (9) Å

  • c = 10.7951 (11) Å

  • α = 76.878 (1)°

  • β = 83.028 (2)°

  • γ = 77.632 (1)°

  • V = 863.69 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.47 × 0.46 × 0.21 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.896, T max = 0.952

  • 4606 measured reflections

  • 3003 independent reflections

  • 1428 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082

  • wR(F 2) = 0.230

  • S = 0.90

  • 3003 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043650/bq2312sup1.cif

e-67-o3099-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043650/bq2312Isup2.hkl

e-67-o3099-Isup2.hkl (147.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043650/bq2312Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.19 3.037 (5) 167
N2—H2B⋯O3 0.86 1.99 2.851 (5) 178
O3—H3⋯O1ii 0.82 1.97 2.765 (5) 164
C14—H14BCgiii 0.97 2.96 3.704 (5) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

supplementary crystallographic information

Comment

The present investigation is a continuation of our work that includes syntheses and structural studies of polyfunctionalized substituted pyran derivatives, owing to their biological activities (Lokaj et al., 1990; Marco et al., 1993).We obtained the title compound, (I), and reported here its crystal structure in the paper.

In the crystal structure, it is observed that structure unit contains a substituted 5,6,7,8-tetrahydro-4H-chromene, a benzene ring and a ethanol solvate. The pyran ring adopts a sofa conformation, the dihedral angle between the (O2/C8-C11) plane and the C8/C7/C11 plane is 16.14 (4)°. Meanwhile, the (O2/C8-C11) plane forms an angle of 88.55 (13)° with the phenyl plane (C1-C6), which means that the pyran ring and the benzene ring is nearly perpendicular. In the crystal, the nitrile group is typical [N≡C = 1.148 (5)Å] and the carbonyl group also is reasonable [C═O =1.223 (6)Å].

Moreover, the plane (C10-C15) also adopts an chair configuration in the compound, and the dihedral angle between the (C10-C15) plane and the (C13-C15) plane is 46.19 (5)°.

In (I) (Fig. 1), the bond lengths and angles of the main molecule are normal and correspond to those observed in 2-amino-7,7-dimethyl-5-oxo-4-phenyl- 5,6,7,8-tetra-hydro-4H-chromene-3-carbonitrile (Tu et al., 2001).

In the crystal structure, there exist typical intermolecular N-H···N, N—H···O, O—H···O hydrogen bonds and weak C-H···π interactions (Table 1.). Intermolecular N-H···O and O—H···O hydrogen bonds link the molecules and ethanol solvent into infinite chain along c-axis and intermolecular hydrogen bonds link these chains forming three-dimensional framework.

Experimental

Malononitrile (5 mmol), 1,3-cyclohexanedione (5 mmol) and 2-chorobenzaldehyde (5 mmol) was dissolved in 20 ml DMF in a round-bottom flask. The mixture was warmed, with agitation, to 423 K over a period of 6 h. The resulting solution was cooled. Crystal of (I) suitable for X-ray diffraction analysis were obtained by recrystallized from ethanol.

Refinement

All H atoms were placed in geometrically idealized positions (N-H 0.86, O-H 0.82 and C-H 0.93-0.98 Å ) and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C) (C, O, N).

Figures

Fig. 1.

Fig. 1.

The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.

Fig. 2.

Fig. 2.

The packing of the title compound. N-H···N, N-H···O and O-H···O interactions are represented with dashed lines.

Crystal data

C16H13ClN2O2·C2H6O Z = 2
Mr = 346.80 F(000) = 364
Triclinic, P1 Dx = 1.334 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7610 (8) Å Cell parameters from 821 reflections
b = 9.6281 (9) Å θ = 2.6–25.4°
c = 10.7951 (11) Å µ = 0.24 mm1
α = 76.878 (1)° T = 298 K
β = 83.028 (2)° Block, red
γ = 77.632 (1)° 0.47 × 0.46 × 0.21 mm
V = 863.69 (14) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3003 independent reflections
Radiation source: fine-focus sealed tube 1428 reflections with I > 2σ(I)
graphite Rint = 0.057
phi and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.896, Tmax = 0.952 k = −9→11
4606 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.126P)2] where P = (Fo2 + 2Fc2)/3
3003 reflections (Δ/σ)max = 0.001
219 parameters Δρmax = 0.36 e Å3
1 restraint Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.94359 (18) 0.32844 (18) 0.01378 (14) 0.0853 (6)
N1 1.0042 (5) 0.4987 (5) 0.3508 (4) 0.0694 (13)
N2 0.7142 (4) 0.3876 (4) 0.6036 (4) 0.0543 (11)
H2A 0.7912 0.4295 0.6051 0.065*
H2B 0.6527 0.3694 0.6711 0.065*
O1 0.5581 (4) 0.2859 (5) 0.0845 (3) 0.0796 (12)
O2 0.5602 (3) 0.2879 (3) 0.5179 (3) 0.0531 (9)
O3 0.5099 (5) 0.3347 (6) 0.8285 (4) 0.1065 (16)
H3 0.5180 0.3377 0.9026 0.160*
C1 0.9531 (5) 0.1785 (6) 0.1361 (5) 0.0551 (13)
C2 1.0586 (6) 0.0538 (7) 0.1199 (6) 0.0659 (15)
H2 1.1212 0.0522 0.0441 0.079*
C3 1.0716 (6) −0.0672 (7) 0.2153 (6) 0.0736 (16)
H3A 1.1434 −0.1508 0.2047 0.088*
C4 0.9784 (6) −0.0667 (6) 0.3281 (6) 0.0707 (16)
H4 0.9861 −0.1494 0.3930 0.085*
C5 0.8745 (5) 0.0572 (5) 0.3432 (5) 0.0532 (12)
H5 0.8139 0.0577 0.4201 0.064*
C6 0.8560 (4) 0.1819 (5) 0.2487 (4) 0.0443 (11)
C7 0.7362 (4) 0.3145 (5) 0.2726 (4) 0.0429 (11)
H7 0.7373 0.3918 0.1960 0.051*
C8 0.7721 (5) 0.3698 (5) 0.3836 (4) 0.0437 (11)
C9 0.6906 (5) 0.3513 (5) 0.4982 (4) 0.0437 (11)
C10 0.5007 (5) 0.2644 (5) 0.4148 (4) 0.0454 (11)
C11 0.5740 (5) 0.2806 (5) 0.2992 (4) 0.0433 (11)
C12 0.4933 (5) 0.2721 (6) 0.1923 (5) 0.0561 (13)
C13 0.3260 (5) 0.2516 (7) 0.2181 (5) 0.0745 (17)
H13A 0.3012 0.2056 0.1539 0.089*
H13B 0.2570 0.3459 0.2115 0.089*
C14 0.2971 (6) 0.1595 (6) 0.3488 (5) 0.0670 (15)
H14A 0.3567 0.0616 0.3523 0.080*
H14B 0.1868 0.1544 0.3640 0.080*
C15 0.3445 (5) 0.2227 (5) 0.4516 (5) 0.0541 (13)
H15A 0.2668 0.3076 0.4644 0.065*
H15B 0.3487 0.1515 0.5313 0.065*
C16 0.8995 (5) 0.4412 (5) 0.3669 (4) 0.0489 (12)
C17 0.3742 (7) 0.2814 (7) 0.8216 (6) 0.097 (2)
H17A 0.3331 0.3234 0.7390 0.117*
H17B 0.2949 0.3108 0.8865 0.117*
C18 0.4070 (11) 0.1237 (8) 0.8401 (7) 0.136 (3)
H18A 0.4878 0.0942 0.7776 0.204*
H18B 0.3137 0.0910 0.8308 0.204*
H18C 0.4412 0.0817 0.9240 0.204*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0840 (11) 0.0960 (12) 0.0676 (10) −0.0272 (9) 0.0204 (7) −0.0043 (8)
N1 0.044 (2) 0.100 (4) 0.076 (3) −0.036 (2) 0.001 (2) −0.025 (3)
N2 0.046 (2) 0.078 (3) 0.050 (3) −0.029 (2) −0.0001 (18) −0.021 (2)
O1 0.060 (2) 0.137 (4) 0.052 (2) −0.040 (2) −0.0035 (18) −0.023 (2)
O2 0.0437 (17) 0.074 (2) 0.050 (2) −0.0305 (16) 0.0028 (14) −0.0154 (17)
O3 0.096 (3) 0.183 (5) 0.057 (3) −0.070 (3) 0.008 (2) −0.025 (3)
C1 0.041 (3) 0.071 (4) 0.062 (3) −0.020 (3) 0.003 (2) −0.026 (3)
C2 0.048 (3) 0.086 (4) 0.075 (4) −0.018 (3) 0.009 (3) −0.041 (4)
C3 0.050 (3) 0.074 (4) 0.101 (5) −0.003 (3) −0.005 (3) −0.036 (4)
C4 0.058 (3) 0.069 (4) 0.084 (4) −0.008 (3) −0.010 (3) −0.014 (3)
C5 0.037 (3) 0.061 (3) 0.061 (3) −0.012 (2) 0.003 (2) −0.014 (3)
C6 0.027 (2) 0.059 (3) 0.054 (3) −0.018 (2) 0.0017 (19) −0.018 (2)
C7 0.031 (2) 0.051 (3) 0.049 (3) −0.016 (2) 0.0002 (18) −0.008 (2)
C8 0.033 (2) 0.056 (3) 0.047 (3) −0.017 (2) −0.0002 (19) −0.013 (2)
C9 0.031 (2) 0.050 (3) 0.053 (3) −0.013 (2) −0.0028 (19) −0.012 (2)
C10 0.037 (2) 0.054 (3) 0.051 (3) −0.017 (2) −0.006 (2) −0.015 (2)
C11 0.036 (2) 0.054 (3) 0.045 (3) −0.015 (2) 0.000 (2) −0.017 (2)
C12 0.045 (3) 0.074 (4) 0.057 (3) −0.019 (2) −0.004 (2) −0.020 (3)
C13 0.038 (3) 0.125 (5) 0.074 (4) −0.027 (3) −0.010 (2) −0.037 (4)
C14 0.043 (3) 0.091 (4) 0.079 (4) −0.032 (3) −0.001 (2) −0.026 (3)
C15 0.036 (3) 0.068 (3) 0.062 (3) −0.020 (2) 0.002 (2) −0.015 (3)
C16 0.035 (2) 0.064 (3) 0.052 (3) −0.014 (2) −0.001 (2) −0.018 (2)
C17 0.068 (4) 0.131 (7) 0.085 (5) −0.004 (4) 0.002 (3) −0.021 (4)
C18 0.203 (10) 0.088 (6) 0.102 (6) −0.006 (6) 0.011 (6) −0.020 (5)

Geometric parameters (Å, °)

Cl1—C1 1.716 (5) C6—CG 1.405 (4)
N1—C16 1.146 (5) C6—C7 1.519 (6)
N2—C9 1.315 (5) C7—C11 1.505 (5)
N2—H2A 0.8600 C7—C8 1.507 (6)
N2—H2B 0.8600 C7—H7 0.9800
O1—C12 1.223 (5) C8—C9 1.346 (6)
O2—C10 1.367 (5) C8—C16 1.405 (6)
O2—C9 1.379 (5) C10—C11 1.324 (6)
O3—C17 1.407 (7) C10—C15 1.491 (6)
O3—H3 0.8200 C11—C12 1.450 (6)
C1—CG 1.373 (5) C12—C13 1.505 (6)
C1—C2 1.381 (7) C13—C14 1.511 (7)
C1—C6 1.399 (6) C13—H13A 0.9700
C2—C3 1.363 (7) C13—H13B 0.9700
C2—CG 1.376 (5) C14—C15 1.518 (6)
C2—H2 0.9300 C14—H14A 0.9700
C3—CG 1.376 (6) C14—H14B 0.9700
C3—C4 1.382 (8) C15—H15A 0.9700
C3—H3A 0.9300 C15—H15B 0.9700
C4—C5 1.366 (7) C17—C18 1.455 (7)
C4—CG 1.380 (6) C17—H17A 0.9700
C4—H4 0.9300 C17—H17B 0.9700
C5—CG 1.359 (5) C18—H18A 0.9600
C5—C6 1.381 (6) C18—H18B 0.9600
C5—H5 0.9300 C18—H18C 0.9600
C9—N2—H2A 120.0 C11—C10—C15 126.5 (4)
C9—N2—H2B 120.0 O2—C10—C15 110.5 (4)
H2A—N2—H2B 120.0 C10—C11—C12 119.2 (4)
C10—O2—C9 118.7 (3) C10—C11—C7 122.6 (4)
C17—O3—H3 109.5 C12—C11—C7 118.1 (4)
CG—C1—C2 60.0 (3) O1—C12—C11 120.8 (4)
CG—C1—C6 60.9 (3) O1—C12—C13 121.4 (4)
C2—C1—C6 120.8 (5) C11—C12—C13 117.7 (4)
CG—C1—Cl1 178.0 (4) C12—C13—C14 112.0 (4)
C2—C1—Cl1 118.1 (4) C12—C13—H13A 109.2
C6—C1—Cl1 121.1 (4) C14—C13—H13A 109.2
C3—C2—CG 60.3 (3) C12—C13—H13B 109.2
C3—C2—C1 120.0 (5) C14—C13—H13B 109.2
CG—C2—C1 59.7 (3) H13A—C13—H13B 107.9
C3—C2—H2 119.8 C13—C14—C15 110.9 (4)
CG—C2—H2 179.7 C13—C14—H14A 109.5
C1—C2—H2 120.1 C15—C14—H14A 109.5
C2—C3—CG 60.3 (3) C13—C14—H14B 109.5
C2—C3—C4 120.4 (5) C15—C14—H14B 109.5
CG—C3—C4 60.1 (3) H14A—C14—H14B 108.1
C2—C3—H3A 120.0 C10—C15—C14 110.6 (4)
CG—C3—H3A 179.6 C10—C15—H15A 109.5
C4—C3—H3A 119.6 C14—C15—H15A 109.5
C5—C4—CG 59.3 (3) C10—C15—H15B 109.5
C5—C4—C3 119.1 (6) C14—C15—H15B 109.5
CG—C4—C3 59.7 (4) H15A—C15—H15B 108.1
C5—C4—H4 120.3 N1—C16—C8 178.5 (5)
CG—C4—H4 179.5 O3—C17—C18 111.4 (6)
C3—C4—H4 120.6 O3—C17—H17A 109.3
CG—C5—C4 60.9 (3) C18—C17—H17A 109.3
CG—C5—C6 61.7 (3) O3—C17—H17B 109.3
C4—C5—C6 122.6 (5) C18—C17—H17B 109.3
CG—C5—H5 179.0 H17A—C17—H17B 108.0
C4—C5—H5 118.7 C17—C18—H18A 109.5
C6—C5—H5 118.8 C17—C18—H18B 109.5
C5—C6—C1 117.0 (4) H18A—C18—H18B 109.5
C5—C6—CG 58.4 (3) C17—C18—H18C 109.5
C1—C6—CG 58.6 (3) H18A—C18—H18C 109.5
C5—C6—C7 119.2 (4) H18B—C18—H18C 109.5
C1—C6—C7 123.7 (4) C5—CG—C1 120.4 (3)
CG—C6—C7 177.6 (4) C5—CG—C3 120.0 (4)
C11—C7—C8 108.2 (3) C1—CG—C3 119.7 (3)
C11—C7—C6 110.9 (3) C5—CG—C2 179.3 (3)
C8—C7—C6 112.1 (3) C1—CG—C2 60.3 (3)
C11—C7—H7 108.5 C3—CG—C2 59.4 (3)
C8—C7—H7 108.5 C5—CG—C4 59.8 (3)
C6—C7—H7 108.5 C1—CG—C4 179.8 (3)
C9—C8—C16 118.6 (4) C3—CG—C4 60.2 (3)
C9—C8—C7 123.3 (4) C2—CG—C4 119.5 (3)
C16—C8—C7 118.0 (4) C5—CG—C6 59.9 (3)
N2—C9—C8 129.3 (4) C1—CG—C6 60.5 (3)
N2—C9—O2 109.7 (4) C3—CG—C6 179.6 (3)
C8—C9—O2 121.0 (4) C2—CG—C6 120.8 (3)
C11—C10—O2 123.0 (4) C4—CG—C6 119.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N1i 0.86 2.19 3.037 (5) 167.
N2—H2B···O3 0.86 1.99 2.851 (5) 178.
O3—H3···O1ii 0.82 1.97 2.765 (5) 164.
C14—H14B···CGiii 0.97 2.96 3.704 (5) 135.

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y, z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2312).

References

  1. Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.
  2. Marco, J. L., Martin, G., Martin, N., Martinez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133–7144.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358–o359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043650/bq2312sup1.cif

e-67-o3099-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043650/bq2312Isup2.hkl

e-67-o3099-Isup2.hkl (147.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043650/bq2312Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES