Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3104. doi: 10.1107/S1600536811044424

(E)-3-[3-(4-Bromo­phen­yl)-1-phenyl-1H-pyrazol-4-yl]-1-(2,4-dichloro­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Shridhar Malladi b, Arun M Isloor b, Kammasandra N Shivananda c
PMCID: PMC3247489  PMID: 22220107

Abstract

In the title mol­ecule, C24H15BrCl2N2O, the dihedral angles betwen the pyrazole ring and its N-bonded phenyl (A) and C-bonded bromo­benzene (B) rings are 10.34 (16) and 40.95 (15)°, respectively. The dihedral angle between rings A and B is 56.89 (17)°. The title mol­ecule exists in a trans conformation with respect to the acyclic C=C bond. In the crystal, mol­ecules are linked into inversion dimers by pairs of C—H⋯O hydrogen bonds, generating R 2 2(14) loops. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For a related structure and background references to pyrazoles, see: Fun et al. (2011). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3104-scheme1.jpg

Experimental

Crystal data

  • C24H15BrCl2N2O

  • M r = 498.19

  • Monoclinic, Inline graphic

  • a = 11.4203 (14) Å

  • b = 9.9357 (13) Å

  • c = 19.656 (3) Å

  • β = 94.653 (3)°

  • V = 2222.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 296 K

  • 0.38 × 0.21 × 0.11 mm

Data collection

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.504, T max = 0.803

  • 23842 measured reflections

  • 6480 independent reflections

  • 2743 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.140

  • S = 0.98

  • 6480 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044424/hb6462sup1.cif

e-67-o3104-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044424/hb6462Isup2.hkl

e-67-o3104-Isup2.hkl (317.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044424/hb6462Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.93 2.41 3.329 (4) 170
C15—H15ACg1ii 0.93 2.82 3.666 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

supplementary crystallographic information

Comment

As part of our ongoing studies of pyrazole derivatives with potential biological activities (Fun et al., 2011), we have synthesized the title compound, (I), to study its crystal structure.

In the title molecule (Fig. 1), the benzene (C19-C24) ring and the two phenyl (C1-C6 and C13-C18) rings form dihedral angles of 10.34 (16), 50.23 (16) and 40.95 (15)°, respectively, with the pyrazole ring (N1/N2/C10-C12). The benzene ring also forms dihedral angles of 56.89 (17) and 38.81 (16)° with dichloro-bound phenyl (C1-C6) and bromo-bound phenyl (C13-C18) rings, respectively. The phenyl rings form a dihedral angle of 89.57 (17)°. The title molecule exists in trans configuration with respect to the acyclic C8═C9 bond [bond length = 1.336 (4) Å]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C11–H11A···O1 hydrogen bonds (Table 1), generating fourteen-membered D22(14) ring motifs (Bernstein et al., 1995). The crystal structure is further consolidated by C15–H15A···Cg1 (Table 1) interactions, where Cg1 is the centroid of C1-C6 phenyl ring.

Experimental

To a cold, stirred mixture of methanol (20 ml) and sodium hydroxide (12.09 mmol), 2,4-dichloroacetophenone (4.03 mmol) was added. The reaction mixture was stirred for 10 min. 3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4- carbaldehyde (4.03 mmol) was added to this solution followed by tetrahydrofuran (30 ml). The solution was further stirred for 2 h at 273 K and then at room temperature for 5 h. It was then poured into ice cold water. The resulting solution was neutralized with dil. HCl. The solid that separated out was filtered, washed with water, dried and crystallized from ethanol to yield colourless blocks. Yield: 1.6 g, 80 %. M.p.: 457-458 K.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C24H15BrCl2N2O F(000) = 1000
Mr = 498.19 Dx = 1.489 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2554 reflections
a = 11.4203 (14) Å θ = 2.9–22.2°
b = 9.9357 (13) Å µ = 2.11 mm1
c = 19.656 (3) Å T = 296 K
β = 94.653 (3)° Block, colourless
V = 2222.9 (5) Å3 0.38 × 0.21 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD diffractometer 6480 independent reflections
Radiation source: fine-focus sealed tube 2743 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→16
Tmin = 0.504, Tmax = 0.803 k = −13→13
23842 measured reflections l = −27→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.6604P] where P = (Fo2 + 2Fc2)/3
6480 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.29004 (5) −0.10153 (6) 0.11448 (2) 0.1353 (3)
O1 0.12637 (19) 0.64502 (19) 0.42799 (11) 0.0738 (6)
N1 −0.10263 (19) 0.0347 (2) 0.43425 (11) 0.0521 (5)
N2 −0.05301 (19) −0.0315 (2) 0.38311 (10) 0.0532 (6)
C1 0.2092 (3) 0.4905 (3) 0.28237 (14) 0.0621 (7)
H1A 0.1332 0.4616 0.2693 0.075*
C2 0.2907 (3) 0.4908 (4) 0.23478 (16) 0.0844 (10)
H2A 0.2701 0.4629 0.1903 0.101*
C3 0.4027 (3) 0.5329 (5) 0.2538 (2) 0.0960 (12)
C4 0.4336 (3) 0.5741 (4) 0.31980 (19) 0.0865 (11)
H4A 0.5097 0.6028 0.3325 0.104*
C5 0.3506 (3) 0.5722 (3) 0.36638 (15) 0.0624 (8)
C6 0.2362 (2) 0.5316 (3) 0.34922 (13) 0.0509 (6)
C7 0.1426 (2) 0.5391 (3) 0.39854 (14) 0.0535 (7)
C8 0.0702 (2) 0.4217 (3) 0.40921 (15) 0.0562 (7)
H8A 0.0056 0.4330 0.4346 0.067*
C9 0.0901 (2) 0.2988 (3) 0.38512 (14) 0.0528 (7)
H9A 0.1547 0.2885 0.3597 0.063*
C10 0.0198 (2) 0.1802 (3) 0.39515 (14) 0.0510 (6)
C11 −0.0605 (2) 0.1606 (3) 0.44253 (14) 0.0546 (7)
H11A −0.0818 0.2231 0.4745 0.065*
C12 0.0218 (2) 0.0567 (3) 0.35954 (13) 0.0499 (6)
C13 0.0901 (2) 0.0206 (3) 0.30199 (13) 0.0513 (6)
C14 0.1383 (3) −0.1062 (3) 0.29778 (16) 0.0647 (8)
H14A 0.1302 −0.1678 0.3327 0.078*
C15 0.1984 (3) −0.1429 (3) 0.24257 (18) 0.0773 (9)
H15A 0.2302 −0.2288 0.2401 0.093*
C16 0.2106 (3) −0.0517 (4) 0.19150 (16) 0.0771 (10)
C17 0.1647 (3) 0.0740 (4) 0.19476 (17) 0.0854 (11)
H17A 0.1741 0.1356 0.1600 0.102*
C18 0.1042 (3) 0.1099 (3) 0.24994 (15) 0.0700 (8)
H18A 0.0724 0.1959 0.2519 0.084*
C19 −0.1936 (2) −0.0283 (3) 0.46832 (13) 0.0538 (7)
C20 −0.2579 (3) 0.0449 (3) 0.51087 (17) 0.0778 (9)
H20A −0.2423 0.1359 0.5180 0.093*
C21 −0.3459 (3) −0.0174 (4) 0.54300 (19) 0.0943 (12)
H21A −0.3899 0.0325 0.5718 0.113*
C22 −0.3699 (3) −0.1507 (4) 0.53335 (19) 0.0871 (10)
H22A −0.4294 −0.1918 0.5554 0.105*
C23 −0.3047 (3) −0.2235 (4) 0.49049 (19) 0.0845 (10)
H23A −0.3209 −0.3142 0.4830 0.101*
C24 −0.2153 (3) −0.1630 (3) 0.45838 (16) 0.0695 (8)
H24A −0.1702 −0.2131 0.4302 0.083*
Cl1 0.50704 (12) 0.5349 (2) 0.19526 (7) 0.1885 (8)
Cl2 0.39593 (8) 0.61893 (11) 0.44937 (5) 0.0945 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1461 (4) 0.1639 (5) 0.1070 (4) −0.0726 (3) 0.0781 (3) −0.0677 (3)
O1 0.0941 (15) 0.0484 (12) 0.0836 (15) −0.0100 (11) 0.0363 (12) −0.0172 (11)
N1 0.0620 (14) 0.0463 (13) 0.0487 (13) −0.0033 (11) 0.0081 (11) −0.0024 (10)
N2 0.0659 (14) 0.0474 (13) 0.0470 (12) −0.0023 (11) 0.0095 (11) −0.0052 (10)
C1 0.0677 (18) 0.0636 (19) 0.0544 (17) 0.0069 (15) 0.0012 (15) −0.0050 (14)
C2 0.094 (3) 0.111 (3) 0.0498 (18) 0.027 (2) 0.0131 (18) −0.0086 (18)
C3 0.077 (3) 0.145 (4) 0.070 (2) 0.030 (2) 0.029 (2) 0.007 (2)
C4 0.061 (2) 0.122 (3) 0.078 (2) 0.0072 (19) 0.0142 (18) 0.008 (2)
C5 0.0647 (19) 0.069 (2) 0.0535 (17) 0.0039 (15) 0.0037 (15) 0.0011 (14)
C6 0.0591 (17) 0.0442 (15) 0.0496 (15) 0.0033 (13) 0.0059 (13) −0.0035 (12)
C7 0.0624 (17) 0.0453 (16) 0.0533 (16) −0.0009 (13) 0.0083 (13) −0.0038 (13)
C8 0.0584 (17) 0.0479 (17) 0.0641 (18) −0.0018 (13) 0.0156 (14) −0.0037 (13)
C9 0.0557 (16) 0.0499 (17) 0.0529 (16) −0.0017 (13) 0.0058 (13) −0.0014 (13)
C10 0.0548 (16) 0.0441 (16) 0.0539 (16) −0.0021 (12) 0.0032 (13) −0.0049 (12)
C11 0.0648 (17) 0.0405 (16) 0.0590 (17) −0.0009 (13) 0.0086 (14) −0.0088 (12)
C12 0.0584 (16) 0.0434 (16) 0.0476 (15) 0.0007 (13) 0.0028 (13) 0.0002 (12)
C13 0.0616 (16) 0.0436 (16) 0.0487 (15) −0.0071 (13) 0.0037 (13) −0.0040 (12)
C14 0.077 (2) 0.0516 (19) 0.0670 (19) −0.0017 (15) 0.0178 (16) 0.0001 (14)
C15 0.089 (2) 0.060 (2) 0.087 (2) −0.0033 (17) 0.034 (2) −0.0154 (18)
C16 0.083 (2) 0.086 (3) 0.065 (2) −0.0349 (19) 0.0275 (17) −0.0257 (18)
C17 0.126 (3) 0.079 (3) 0.0539 (19) −0.032 (2) 0.021 (2) 0.0017 (17)
C18 0.099 (2) 0.0571 (19) 0.0543 (18) −0.0068 (17) 0.0096 (17) 0.0015 (14)
C19 0.0604 (17) 0.0539 (17) 0.0463 (15) −0.0079 (14) −0.0007 (13) 0.0022 (13)
C20 0.089 (2) 0.065 (2) 0.084 (2) −0.0081 (17) 0.0355 (19) −0.0082 (17)
C21 0.093 (3) 0.096 (3) 0.100 (3) −0.016 (2) 0.045 (2) −0.012 (2)
C22 0.084 (2) 0.098 (3) 0.082 (2) −0.030 (2) 0.020 (2) 0.003 (2)
C23 0.093 (2) 0.076 (2) 0.084 (2) −0.032 (2) 0.006 (2) −0.0035 (19)
C24 0.084 (2) 0.061 (2) 0.0650 (19) −0.0174 (17) 0.0129 (17) −0.0086 (15)
Cl1 0.1164 (9) 0.351 (2) 0.1079 (9) 0.0464 (13) 0.0678 (8) 0.0086 (13)
Cl2 0.0853 (6) 0.1270 (8) 0.0694 (6) −0.0180 (5) −0.0044 (5) −0.0168 (5)

Geometric parameters (Å, °)

Br1—C16 1.893 (3) C10—C12 1.414 (4)
O1—C7 1.222 (3) C11—H11A 0.9300
N1—C11 1.346 (3) C12—C13 1.469 (4)
N1—N2 1.363 (3) C13—C18 1.374 (4)
N1—C19 1.425 (3) C13—C14 1.380 (4)
N2—C12 1.333 (3) C14—C15 1.379 (4)
C1—C2 1.372 (4) C14—H14A 0.9300
C1—C6 1.387 (4) C15—C16 1.368 (5)
C1—H1A 0.9300 C15—H15A 0.9300
C2—C3 1.369 (5) C16—C17 1.358 (5)
C2—H2A 0.9300 C17—C18 1.380 (4)
C3—C4 1.378 (5) C17—H17A 0.9300
C3—Cl1 1.723 (3) C18—H18A 0.9300
C4—C5 1.370 (4) C19—C20 1.367 (4)
C4—H4A 0.9300 C19—C24 1.373 (4)
C5—C6 1.384 (4) C20—C21 1.377 (4)
C5—Cl2 1.734 (3) C20—H20A 0.9300
C6—C7 1.502 (4) C21—C22 1.363 (5)
C7—C8 1.455 (4) C21—H21A 0.9300
C8—C9 1.336 (4) C22—C23 1.374 (5)
C8—H8A 0.9300 C22—H22A 0.9300
C9—C10 1.448 (4) C23—C24 1.380 (4)
C9—H9A 0.9300 C23—H23A 0.9300
C10—C11 1.373 (4) C24—H24A 0.9300
C11—N1—N2 111.8 (2) N2—C12—C13 120.2 (2)
C11—N1—C19 128.2 (2) C10—C12—C13 128.6 (2)
N2—N1—C19 119.8 (2) C18—C13—C14 118.3 (3)
C12—N2—N1 104.8 (2) C18—C13—C12 121.1 (3)
C2—C1—C6 122.3 (3) C14—C13—C12 120.5 (2)
C2—C1—H1A 118.8 C15—C14—C13 121.0 (3)
C6—C1—H1A 118.8 C15—C14—H14A 119.5
C3—C2—C1 119.0 (3) C13—C14—H14A 119.5
C3—C2—H2A 120.5 C16—C15—C14 119.3 (3)
C1—C2—H2A 120.5 C16—C15—H15A 120.4
C2—C3—C4 120.7 (3) C14—C15—H15A 120.4
C2—C3—Cl1 120.2 (3) C17—C16—C15 120.8 (3)
C4—C3—Cl1 119.2 (3) C17—C16—Br1 119.4 (3)
C5—C4—C3 119.1 (3) C15—C16—Br1 119.8 (3)
C5—C4—H4A 120.4 C16—C17—C18 119.7 (3)
C3—C4—H4A 120.4 C16—C17—H17A 120.2
C4—C5—C6 122.1 (3) C18—C17—H17A 120.2
C4—C5—Cl2 117.1 (3) C13—C18—C17 121.0 (3)
C6—C5—Cl2 120.7 (2) C13—C18—H18A 119.5
C5—C6—C1 116.7 (3) C17—C18—H18A 119.5
C5—C6—C7 122.4 (2) C20—C19—C24 120.4 (3)
C1—C6—C7 120.8 (2) C20—C19—N1 120.1 (3)
O1—C7—C8 120.8 (3) C24—C19—N1 119.5 (3)
O1—C7—C6 119.4 (2) C19—C20—C21 119.3 (3)
C8—C7—C6 119.7 (2) C19—C20—H20A 120.3
C9—C8—C7 124.5 (3) C21—C20—H20A 120.3
C9—C8—H8A 117.7 C22—C21—C20 121.3 (3)
C7—C8—H8A 117.7 C22—C21—H21A 119.4
C8—C9—C10 125.7 (3) C20—C21—H21A 119.4
C8—C9—H9A 117.2 C21—C22—C23 119.0 (3)
C10—C9—H9A 117.2 C21—C22—H22A 120.5
C11—C10—C12 104.6 (2) C23—C22—H22A 120.5
C11—C10—C9 128.0 (2) C22—C23—C24 120.6 (3)
C12—C10—C9 127.4 (2) C22—C23—H23A 119.7
N1—C11—C10 107.6 (2) C24—C23—H23A 119.7
N1—C11—H11A 126.2 C19—C24—C23 119.4 (3)
C10—C11—H11A 126.2 C19—C24—H24A 120.3
N2—C12—C10 111.2 (2) C23—C24—H24A 120.3
C11—N1—N2—C12 0.1 (3) C11—C10—C12—N2 0.7 (3)
C19—N1—N2—C12 176.1 (2) C9—C10—C12—N2 178.7 (2)
C6—C1—C2—C3 0.1 (5) C11—C10—C12—C13 178.5 (3)
C1—C2—C3—C4 0.1 (6) C9—C10—C12—C13 −3.5 (4)
C1—C2—C3—Cl1 −179.9 (3) N2—C12—C13—C18 136.9 (3)
C2—C3—C4—C5 0.1 (6) C10—C12—C13—C18 −40.7 (4)
Cl1—C3—C4—C5 −179.8 (3) N2—C12—C13—C14 −40.7 (4)
C3—C4—C5—C6 −0.7 (5) C10—C12—C13—C14 141.6 (3)
C3—C4—C5—Cl2 177.6 (3) C18—C13—C14—C15 −0.5 (5)
C4—C5—C6—C1 1.0 (4) C12—C13—C14—C15 177.3 (3)
Cl2—C5—C6—C1 −177.2 (2) C13—C14—C15—C16 0.3 (5)
C4—C5—C6—C7 −175.3 (3) C14—C15—C16—C17 0.2 (5)
Cl2—C5—C6—C7 6.5 (4) C14—C15—C16—Br1 −178.7 (2)
C2—C1—C6—C5 −0.7 (4) C15—C16—C17—C18 −0.6 (5)
C2—C1—C6—C7 175.6 (3) Br1—C16—C17—C18 178.4 (2)
C5—C6—C7—O1 51.9 (4) C14—C13—C18—C17 0.1 (5)
C1—C6—C7—O1 −124.2 (3) C12—C13—C18—C17 −177.6 (3)
C5—C6—C7—C8 −129.9 (3) C16—C17—C18—C13 0.4 (5)
C1—C6—C7—C8 54.0 (4) C11—N1—C19—C20 6.9 (4)
O1—C7—C8—C9 −172.3 (3) N2—N1—C19—C20 −168.4 (3)
C6—C7—C8—C9 9.5 (4) C11—N1—C19—C24 −172.7 (3)
C7—C8—C9—C10 179.8 (3) N2—N1—C19—C24 12.0 (4)
C8—C9—C10—C11 −16.9 (5) C24—C19—C20—C21 −0.9 (5)
C8—C9—C10—C12 165.5 (3) N1—C19—C20—C21 179.6 (3)
N2—N1—C11—C10 0.3 (3) C19—C20—C21—C22 0.2 (6)
C19—N1—C11—C10 −175.3 (2) C20—C21—C22—C23 −0.2 (6)
C12—C10—C11—N1 −0.6 (3) C21—C22—C23—C24 0.8 (6)
C9—C10—C11—N1 −178.6 (2) C20—C19—C24—C23 1.5 (5)
N1—N2—C12—C10 −0.5 (3) N1—C19—C24—C23 −178.9 (3)
N1—N2—C12—C13 −178.5 (2) C22—C23—C24—C19 −1.5 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 phenyl ring.
D—H···A D—H H···A D···A D—H···A
C11—H11A···O1i 0.93 2.41 3.329 (4) 170
C15—H15A···Cg1ii 0.93 2.82 3.666 (3) 152

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6462).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o3102–o3103. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044424/hb6462sup1.cif

e-67-o3104-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044424/hb6462Isup2.hkl

e-67-o3104-Isup2.hkl (317.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044424/hb6462Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES