Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3107. doi: 10.1107/S1600536811044692

(E,E)-N 1,N 2-Bis(2,6-difluoro­benzyl­idene)ethane-1,2-diamine

Mohammad Khaledi Sardashti a,*, Reza Kia b, William Clegg c, Ross W Harrington c
PMCID: PMC3247492  PMID: 22220110

Abstract

The asymmetric unit of the title compound, C16H12F4N2, comprises half of the potentially bidentate Schiff base ligand, with an inversion centre located at the mid-point of the central C—C bond. The crystal packing is stabilized by inter­molecular C—H⋯N and π–π inter­actions [centroid–centroid distance = 3.6793 (12) Å and inter­planar spacing = 3.4999 (7) Å].

Related literature

For background to the synthesis and structural variations of Schiff base ligands and their complexes, see: Granovski et al. (1993); Elmali et al. (2000).graphic file with name e-67-o3107-scheme1.jpg

Experimental

Crystal data

  • C16H12F4N2

  • M r = 308.28

  • Monoclinic, Inline graphic

  • a = 7.3304 (10) Å

  • b = 10.5414 (15) Å

  • c = 9.2106 (13) Å

  • β = 105.487 (2)°

  • V = 685.89 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.34 × 0.30 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.958, T max = 0.987

  • 4573 measured reflections

  • 1203 independent reflections

  • 1057 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.124

  • S = 1.15

  • 1203 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044692/su2335sup1.cif

e-67-o3107-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044692/su2335Isup2.hkl

e-67-o3107-Isup2.hkl (59.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044692/su2335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N1i 0.95 2.53 3.471 (2) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

MK thanks the Islamic Azad University, Shahrkord Branch, for support of this work. WC and RWH thank the EPSRC (UK) for equipment funding.

supplementary crystallographic information

Comment

Schiff base ligands are among the most prevalent ligands in the field of coordination chemistry. Metal derivatives of Schiff bases have been studied extensively, and NiII and CuII complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Granovski et al., 1993).

The asymmetric unit of the title compound comprises half of the potentially bidentate Schiff base ligand; an inversion centre is located in the middle of the central C—C bond (Fig. 1). Each half of the molecule is essentially planar, the imine segment (C1—N1═C2—C3) being rotated only 7.36 (10)° out of the plane of the benzene ring. The two halves are parallel by inversion symmetry, but not coplanar, the CH2CH2 linker unit forming a step between them.

The crystal packing is stabilized by intermolecular C—H···N interactions (see Table 1), which generate sheets parallel to (1 0 -1), and by intermolecular π-π interactions [centroid-centroid distance = 3.6793 (12) Å, interplanar separation = 3.4999 (7) Å, the two planes are strictly parallel by inversion symmetry].

Experimental

The title compound was synthesized by mixing 2,4-difluorobenzaldehyde (4 mmol) and ethylenediamine (2 mmol) in chloroform (20 ml). After stirring for 2 h, the solution was filtered and the resulting yellow solid was crystallized from ethanol, giving single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically and constrained to ride on the parent atoms, with C—H = 0.95–0.99Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Symmetry code for suffix A: -x + 1, -y + 1, -z + 2.

Fig. 2.

Fig. 2.

The crystal packing, viewed down the a axis, showing linking of molecules through the intermolecular C—H···N hydrogen bonds to form sheets in the (1 0 - 1) plane. The dashed lines represent these intermolecular interactions.

Crystal data

C16H12F4N2 F(000) = 316
Mr = 308.28 Dx = 1.493 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4055 reflections
a = 7.3304 (10) Å θ = 2.9–28.3°
b = 10.5414 (15) Å µ = 0.13 mm1
c = 9.2106 (13) Å T = 150 K
β = 105.487 (2)° Plate, yellow
V = 685.89 (17) Å3 0.34 × 0.30 × 0.10 mm
Z = 2

Data collection

Bruker SMART 1K CCD area-detector diffractometer 1203 independent reflections
Radiation source: fine-focus sealed tube 1057 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 8.33 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→12
Tmin = 0.958, Tmax = 0.987 l = −10→10
4573 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.2701P] where P = (Fo2 + 2Fc2)/3
1203 reflections (Δ/σ)max < 0.001
100 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The low-temperature data were collected with the Oxford Cyrosystems Cryostream low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.24616 (17) 0.28505 (10) 0.59397 (12) 0.0409 (4)
F2 0.29841 (19) 0.71120 (10) 0.45850 (14) 0.0434 (4)
N1 0.4481 (2) 0.46153 (14) 0.79618 (16) 0.0297 (4)
C1 0.5503 (3) 0.51558 (19) 0.9411 (2) 0.0334 (5)
H1A 0.5590 0.6088 0.9317 0.040*
H1B 0.6805 0.4809 0.9717 0.040*
C2 0.3868 (2) 0.53796 (16) 0.6894 (2) 0.0277 (4)
H2 0.4123 0.6256 0.7087 0.033*
C3 0.2783 (2) 0.50109 (15) 0.53673 (18) 0.0244 (4)
C4 0.2091 (2) 0.37948 (16) 0.49141 (19) 0.0272 (4)
C5 0.1031 (2) 0.35046 (18) 0.3480 (2) 0.0311 (5)
H5 0.0594 0.2664 0.3225 0.037*
C6 0.0615 (3) 0.44634 (19) 0.2419 (2) 0.0332 (5)
H6 −0.0123 0.4279 0.1426 0.040*
C7 0.1257 (3) 0.56853 (19) 0.2780 (2) 0.0330 (5)
H7 0.0974 0.6345 0.2052 0.040*
C8 0.2317 (2) 0.59168 (16) 0.4228 (2) 0.0287 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0569 (8) 0.0217 (6) 0.0346 (6) −0.0067 (5) −0.0046 (5) 0.0054 (4)
F2 0.0677 (8) 0.0190 (6) 0.0419 (7) 0.0003 (5) 0.0118 (6) 0.0036 (5)
N1 0.0339 (8) 0.0273 (8) 0.0247 (8) 0.0032 (6) 0.0022 (6) −0.0038 (6)
C1 0.0331 (10) 0.0355 (10) 0.0280 (10) −0.0021 (8) 0.0020 (8) −0.0042 (8)
C2 0.0331 (9) 0.0210 (9) 0.0287 (9) −0.0031 (7) 0.0077 (7) −0.0021 (7)
C3 0.0259 (8) 0.0230 (9) 0.0248 (9) 0.0035 (7) 0.0075 (7) −0.0012 (7)
C4 0.0306 (9) 0.0228 (9) 0.0271 (9) 0.0030 (7) 0.0059 (7) 0.0027 (7)
C5 0.0312 (9) 0.0292 (10) 0.0308 (10) −0.0017 (7) 0.0044 (8) −0.0059 (7)
C6 0.0300 (9) 0.0421 (11) 0.0251 (9) 0.0044 (8) 0.0032 (7) −0.0014 (8)
C7 0.0370 (10) 0.0349 (10) 0.0278 (10) 0.0101 (8) 0.0098 (8) 0.0082 (8)
C8 0.0357 (10) 0.0198 (9) 0.0324 (10) 0.0042 (7) 0.0124 (8) 0.0007 (7)

Geometric parameters (Å, °)

F1—C4 1.349 (2) C3—C8 1.392 (2)
F2—C8 1.360 (2) C3—C4 1.401 (3)
N1—C2 1.258 (2) C4—C5 1.376 (3)
N1—C1 1.461 (2) C5—C6 1.382 (3)
C1—C1i 1.502 (4) C5—H5 0.950
C1—H1A 0.990 C6—C7 1.381 (3)
C1—H1B 0.990 C6—H6 0.950
C2—C3 1.471 (2) C7—C8 1.374 (3)
C2—H2 0.950 C7—H7 0.950
C2—N1—C1 116.98 (16) F1—C4—C3 118.52 (15)
N1—C1—C1i 110.12 (19) C5—C4—C3 123.79 (16)
N1—C1—H1A 109.6 C4—C5—C6 118.53 (17)
C1i—C1—H1A 109.6 C4—C5—H5 120.7
N1—C1—H1B 109.6 C6—C5—H5 120.7
C1i—C1—H1B 109.6 C7—C6—C5 120.98 (17)
H1A—C1—H1B 108.1 C7—C6—H6 119.5
N1—C2—C3 124.56 (16) C5—C6—H6 119.5
N1—C2—H2 117.7 C8—C7—C6 117.89 (18)
C3—C2—H2 117.7 C8—C7—H7 121.1
C8—C3—C4 114.00 (15) C6—C7—H7 121.1
C8—C3—C2 120.03 (15) F2—C8—C7 118.23 (17)
C4—C3—C2 125.95 (15) F2—C8—C3 116.95 (16)
F1—C4—C5 117.69 (16) C7—C8—C3 124.81 (17)
C2—N1—C1—C1i 119.1 (2) C3—C4—C5—C6 −0.1 (3)
C1—N1—C2—C3 −178.90 (15) C4—C5—C6—C7 0.4 (3)
N1—C2—C3—C8 −174.14 (17) C5—C6—C7—C8 −0.1 (3)
N1—C2—C3—C4 7.6 (3) C6—C7—C8—F2 178.75 (15)
C8—C3—C4—F1 −179.76 (15) C6—C7—C8—C3 −0.6 (3)
C2—C3—C4—F1 −1.4 (3) C4—C3—C8—F2 −178.50 (14)
C8—C3—C4—C5 −0.5 (3) C2—C3—C8—F2 3.0 (2)
C2—C3—C4—C5 177.93 (16) C4—C3—C8—C7 0.8 (3)
F1—C4—C5—C6 179.17 (15) C2—C3—C8—C7 −177.67 (16)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···N1ii 0.95 2.53 3.471 (2) 171

Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2335).

References

  1. Bruker (2005). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. [DOI] [PubMed]
  3. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044692/su2335sup1.cif

e-67-o3107-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044692/su2335Isup2.hkl

e-67-o3107-Isup2.hkl (59.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044692/su2335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES