Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3108. doi: 10.1107/S1600536811044801

(E,E)-N 1,N 4-Bis(2,6-difluoro­benzyl­idene)butane-1,4-diamine

Mohammad Khaledi Sardashti a,*, Reza Kia b, William Clegg c, Ross W Harrington c
PMCID: PMC3247493  PMID: 22220111

Abstract

The asymmetric unit of the title compound, C18H16F4N2, comprises two half crystallographically independent potentially bidentate Schiff base ligands, with an inversion centre located at the mid-point of the central C—C bond. The crystal packing is stabilized by inter­molecular C—H⋯F and π–π inter­actions [centroid–centroid distance = 3.8283 (11) Å].

Related literature

For background to the synthesis and structural variations of Schiff base ligands and their complexes, see: Granovski et al. (1993); Elmali et al. (2000).graphic file with name e-67-o3108-scheme1.jpg

Experimental

Crystal data

  • C18H16F4N2

  • M r = 336.33

  • Triclinic, Inline graphic

  • a = 6.4672 (8) Å

  • b = 8.9296 (12) Å

  • c = 14.4939 (19) Å

  • α = 104.956 (2)°

  • β = 94.474 (2)°

  • γ = 93.679 (2)°

  • V = 803.10 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.34 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.962, T max = 0.977

  • 5828 measured reflections

  • 2819 independent reflections

  • 2394 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.11

  • 2819 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek,2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044801/su2336sup1.cif

e-67-o3108-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044801/su2336Isup2.hkl

e-67-o3108-Isup2.hkl (138.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044801/su2336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F3i 0.95 2.43 3.137 (2) 131
C7—H7⋯F1ii 0.95 2.54 3.378 (2) 148
C12—H12⋯F2 0.95 2.42 3.192 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MK thanks the Islamic Azad University, Shahrkord Branch, for the support of this work. WC and RWH thank the EPSRC (UK) for equipment funding.

supplementary crystallographic information

Comment

Schiff base ligands are among the most prevalent ligands in the field of coordination chemistry. Metal derivatives of Schiff bases have been studied extensively, and NiII and CuII complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Granovski et al., 1993).

The asymmetric unit of the title compound comprises two half crystallographically independent Schiff base molecules; A (including N1) and B (including N2), see Fig. 1. Each molecule lies about an inversion centre, which is located in the middle of the central C—C bond (Fig. 1). In both molecules the aromatic ring and the imine segment (C—N═C) are approximately coplanar [dihedral angle 14.9 (2)° for molecule A and 3.4 (2)° for molecule B]. These two essentially planar units are linked by a step formed by the four CH2 groups, so that they are strictly parallel by inversion symmetry but not coplanar.

The crystal packing is stabilized by intermolecular C—H···F interactions (Fig. 2 and Table 1), and by ring stacking of the benzene rings of the two independent molecules [centroid···centroid distance 3.8283 (11) Å, dihedral angle 2.33 (8)°].

Experimental

The title compound was synthesized by mixing 2,4-difluorobenzaldehyde (4 mmol) and butylenediamine (2 mmol) in chloroform (20 ml). After stirring for 2 h, the solution was filtered and the resulting yellow solid was crystallized from ethanol, giving single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically and constrained to ride on the parent atoms: C-H = 0.95 and 0.99 %A for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the two indpendent molecules of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme [Symmetry codes for suffix A: -x, -y + 1, -z + 1 for molecule A, and -x, -y, -z + 2 for molecule B].

Fig. 2.

Fig. 2.

The crystal packing, viewed down the a axis, showing the intermolecular C—H···F hydrogen bonds (dashed lines), which link the molecules to form a three-dimensional network.

Crystal data

C18H16F4N2 Z = 2
Mr = 336.33 F(000) = 348
Triclinic, P1 Dx = 1.391 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4672 (8) Å Cell parameters from 4637 reflections
b = 8.9296 (12) Å θ = 2.9–28.3°
c = 14.4939 (19) Å µ = 0.12 mm1
α = 104.956 (2)° T = 150 K
β = 94.474 (2)° Block, colourless
γ = 93.679 (2)° 0.34 × 0.30 × 0.20 mm
V = 803.10 (18) Å3

Data collection

Bruker SMART 1K CCD area-detector diffractometer 2819 independent reflections
Radiation source: fine-focus sealed tube 2394 reflections with I > 2σ(I)
graphite Rint = 0.019
Detector resolution: 8.33 pixels mm-1 θmax = 25.0°, θmin = 2.4°
ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −10→10
Tmin = 0.962, Tmax = 0.977 l = −16→17
5828 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2616P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
2819 reflections Δρmax = 0.25 e Å3
218 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0064 (19)

Special details

Experimental. The low-temperature data were collected with the Oxford Cyrosystems Cryostream low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1808 (2) 0.73556 (16) 0.64201 (10) 0.0304 (3)
N2 0.1964 (2) 0.08666 (15) 0.86448 (9) 0.0280 (3)
F1 0.19530 (16) 1.11574 (12) 0.54522 (8) 0.0423 (3)
F2 0.57474 (16) 0.85519 (11) 0.73666 (7) 0.0392 (3)
F3 0.14208 (16) 0.33304 (13) 0.78309 (9) 0.0486 (3)
F4 0.76402 (16) 0.30222 (12) 0.96638 (8) 0.0424 (3)
C1 0.3727 (2) 1.10083 (19) 0.59734 (11) 0.0274 (4)
C2 0.5378 (3) 1.21002 (19) 0.60645 (12) 0.0327 (4)
H2 0.5284 1.2924 0.5764 0.039*
C3 0.7184 (3) 1.1967 (2) 0.66064 (12) 0.0323 (4)
H3 0.8348 1.2707 0.6677 0.039*
C4 0.7309 (2) 1.07689 (19) 0.70447 (12) 0.0290 (4)
H4 0.8539 1.0686 0.7425 0.035*
C5 0.5610 (2) 0.96960 (18) 0.69179 (11) 0.0260 (4)
C6 0.3742 (2) 0.97517 (17) 0.63782 (10) 0.0236 (3)
C7 0.1858 (2) 0.86668 (18) 0.62385 (11) 0.0262 (4)
H7 0.0593 0.8975 0.5995 0.031*
C8 −0.0223 (3) 0.6452 (2) 0.62406 (12) 0.0353 (4)
H8A −0.1286 0.7057 0.6011 0.042*
H8B −0.0627 0.6257 0.6847 0.042*
C9 −0.0163 (3) 0.49050 (19) 0.54960 (12) 0.0324 (4)
H9A 0.0978 0.4343 0.5706 0.039*
H9B −0.1488 0.4263 0.5459 0.039*
C10 0.3370 (2) 0.38982 (19) 0.82192 (12) 0.0285 (4)
C11 0.4160 (3) 0.52544 (19) 0.80426 (12) 0.0335 (4)
H11 0.3351 0.5768 0.7664 0.040*
C12 0.6160 (3) 0.58532 (19) 0.84294 (12) 0.0336 (4)
H12 0.6728 0.6790 0.8316 0.040*
C13 0.7339 (3) 0.51022 (19) 0.89783 (12) 0.0331 (4)
H13 0.8712 0.5509 0.9245 0.040*
C14 0.6470 (3) 0.37536 (18) 0.91265 (12) 0.0275 (4)
C15 0.4472 (2) 0.30737 (17) 0.87626 (11) 0.0245 (3)
C16 0.3732 (2) 0.15886 (18) 0.89413 (11) 0.0261 (4)
H16 0.4662 0.1137 0.9310 0.031*
C17 0.1558 (3) −0.06100 (18) 0.88829 (12) 0.0298 (4)
H17A 0.2825 −0.0846 0.9229 0.036*
H17B 0.1225 −0.1454 0.8284 0.036*
C18 −0.0243 (2) −0.05570 (17) 0.95036 (11) 0.0248 (3)
H18A −0.1474 −0.0238 0.9176 0.030*
H18B −0.0605 −0.1615 0.9571 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0337 (8) 0.0262 (7) 0.0285 (7) −0.0040 (6) 0.0007 (6) 0.0044 (6)
N2 0.0307 (8) 0.0286 (7) 0.0266 (7) −0.0016 (6) 0.0052 (6) 0.0109 (6)
F1 0.0344 (6) 0.0431 (6) 0.0530 (7) −0.0030 (5) −0.0134 (5) 0.0260 (5)
F2 0.0374 (6) 0.0374 (6) 0.0489 (6) 0.0016 (4) −0.0052 (5) 0.0257 (5)
F3 0.0304 (6) 0.0456 (6) 0.0743 (8) −0.0077 (5) −0.0171 (5) 0.0333 (6)
F4 0.0352 (6) 0.0387 (6) 0.0568 (7) −0.0022 (4) −0.0143 (5) 0.0255 (5)
C1 0.0260 (8) 0.0301 (8) 0.0258 (8) 0.0033 (7) −0.0027 (6) 0.0084 (7)
C2 0.0371 (10) 0.0287 (9) 0.0350 (9) −0.0022 (7) 0.0009 (7) 0.0155 (7)
C3 0.0289 (9) 0.0348 (9) 0.0318 (9) −0.0058 (7) 0.0035 (7) 0.0081 (7)
C4 0.0230 (8) 0.0350 (9) 0.0283 (8) 0.0023 (7) 0.0009 (7) 0.0075 (7)
C5 0.0308 (9) 0.0254 (8) 0.0241 (8) 0.0054 (7) 0.0048 (7) 0.0092 (6)
C6 0.0265 (8) 0.0231 (8) 0.0200 (7) 0.0018 (6) 0.0043 (6) 0.0029 (6)
C7 0.0260 (8) 0.0274 (8) 0.0242 (8) 0.0016 (6) 0.0019 (6) 0.0053 (6)
C8 0.0376 (10) 0.0330 (9) 0.0333 (9) −0.0093 (8) 0.0081 (8) 0.0069 (7)
C9 0.0382 (10) 0.0260 (8) 0.0323 (9) −0.0096 (7) 0.0027 (7) 0.0098 (7)
C10 0.0240 (8) 0.0277 (8) 0.0334 (9) 0.0004 (7) −0.0009 (7) 0.0088 (7)
C11 0.0392 (10) 0.0287 (9) 0.0349 (9) 0.0038 (7) −0.0034 (8) 0.0142 (7)
C12 0.0421 (10) 0.0228 (8) 0.0365 (9) −0.0041 (7) 0.0004 (8) 0.0116 (7)
C13 0.0301 (9) 0.0285 (9) 0.0382 (10) −0.0053 (7) −0.0045 (7) 0.0087 (7)
C14 0.0278 (9) 0.0261 (8) 0.0297 (8) 0.0048 (7) −0.0007 (7) 0.0100 (7)
C15 0.0262 (8) 0.0229 (8) 0.0250 (8) 0.0031 (6) 0.0055 (6) 0.0062 (6)
C16 0.0271 (9) 0.0269 (8) 0.0269 (8) 0.0058 (7) 0.0049 (7) 0.0101 (7)
C17 0.0370 (9) 0.0243 (8) 0.0284 (9) −0.0009 (7) 0.0064 (7) 0.0076 (7)
C18 0.0281 (8) 0.0212 (7) 0.0246 (8) −0.0053 (6) −0.0003 (6) 0.0080 (6)

Geometric parameters (Å, °)

N1—C7 1.264 (2) C8—H8B 0.990
N1—C8 1.465 (2) C9—C9i 1.520 (3)
N2—C16 1.262 (2) C9—H9A 0.990
N2—C17 1.460 (2) C9—H9B 0.990
F1—C1 1.3568 (18) C10—C11 1.376 (2)
F2—C5 1.3492 (18) C10—C15 1.396 (2)
F3—C10 1.3504 (19) C11—C12 1.384 (2)
F4—C14 1.3562 (18) C11—H11 0.950
C1—C2 1.373 (2) C12—C13 1.382 (2)
C1—C6 1.394 (2) C12—H12 0.950
C2—C3 1.385 (2) C13—C14 1.370 (2)
C2—H2 0.950 C13—H13 0.950
C3—C4 1.382 (2) C14—C15 1.394 (2)
C3—H3 0.950 C15—C16 1.473 (2)
C4—C5 1.379 (2) C16—H16 0.950
C4—H4 0.950 C17—C18 1.522 (2)
C5—C6 1.398 (2) C17—H17A 0.990
C6—C7 1.474 (2) C17—H17B 0.990
C7—H7 0.950 C18—C18ii 1.520 (3)
C8—C9 1.523 (2) C18—H18A 0.990
C8—H8A 0.990 C18—H18B 0.990
C7—N1—C8 116.31 (15) H9A—C9—H9B 107.8
C16—N2—C17 116.69 (14) F3—C10—C11 117.55 (14)
F1—C1—C2 117.90 (14) F3—C10—C15 118.52 (14)
F1—C1—C6 117.45 (14) C11—C10—C15 123.92 (15)
C2—C1—C6 124.65 (15) C10—C11—C12 118.54 (15)
C1—C2—C3 118.21 (15) C10—C11—H11 120.7
C1—C2—H2 120.9 C12—C11—H11 120.7
C3—C2—H2 120.9 C13—C12—C11 120.70 (15)
C4—C3—C2 120.62 (16) C13—C12—H12 119.7
C4—C3—H3 119.7 C11—C12—H12 119.7
C2—C3—H3 119.7 C14—C13—C12 118.07 (16)
C5—C4—C3 118.57 (15) C14—C13—H13 121.0
C5—C4—H4 120.7 C12—C13—H13 121.0
C3—C4—H4 120.7 F4—C14—C13 117.68 (15)
F2—C5—C4 117.69 (14) F4—C14—C15 117.52 (14)
F2—C5—C6 118.30 (14) C13—C14—C15 124.80 (15)
C4—C5—C6 123.98 (15) C14—C15—C10 113.96 (14)
C1—C6—C5 113.95 (14) C14—C15—C16 119.93 (14)
C1—C6—C7 119.55 (14) C10—C15—C16 126.07 (15)
C5—C6—C7 126.46 (14) N2—C16—C15 125.39 (15)
N1—C7—C6 124.53 (15) N2—C16—H16 117.3
N1—C7—H7 117.7 C15—C16—H16 117.3
C6—C7—H7 117.7 N2—C17—C18 111.32 (13)
N1—C8—C9 111.07 (14) N2—C17—H17A 109.4
N1—C8—H8A 109.4 C18—C17—H17A 109.4
C9—C8—H8A 109.4 N2—C17—H17B 109.4
N1—C8—H8B 109.4 C18—C17—H17B 109.4
C9—C8—H8B 109.4 H17A—C17—H17B 108.0
H8A—C8—H8B 108.0 C18ii—C18—C17 113.13 (16)
C9i—C9—C8 112.91 (17) C18ii—C18—H18A 109.0
C9i—C9—H9A 109.0 C17—C18—H18A 109.0
C8—C9—H9A 109.0 C18ii—C18—H18B 109.0
C9i—C9—H9B 109.0 C17—C18—H18B 109.0
C8—C9—H9B 109.0 H18A—C18—H18B 107.8
F1—C1—C2—C3 179.14 (15) F3—C10—C11—C12 −179.66 (15)
C6—C1—C2—C3 −0.9 (3) C15—C10—C11—C12 −0.5 (3)
C1—C2—C3—C4 −0.2 (3) C10—C11—C12—C13 0.2 (3)
C2—C3—C4—C5 1.0 (2) C11—C12—C13—C14 0.0 (3)
C3—C4—C5—F2 −178.75 (14) C12—C13—C14—F4 179.83 (15)
C3—C4—C5—C6 −0.8 (2) C12—C13—C14—C15 0.1 (3)
F1—C1—C6—C5 −178.90 (13) F4—C14—C15—C10 179.92 (14)
C2—C1—C6—C5 1.2 (2) C13—C14—C15—C10 −0.3 (2)
F1—C1—C6—C7 −0.8 (2) F4—C14—C15—C16 −2.0 (2)
C2—C1—C6—C7 179.26 (15) C13—C14—C15—C16 177.79 (16)
F2—C5—C6—C1 177.68 (13) F3—C10—C15—C14 179.69 (14)
C4—C5—C6—C1 −0.3 (2) C11—C10—C15—C14 0.5 (2)
F2—C5—C6—C7 −0.2 (2) F3—C10—C15—C16 1.7 (2)
C4—C5—C6—C7 −178.22 (15) C11—C10—C15—C16 −177.44 (16)
C8—N1—C7—C6 179.47 (14) C17—N2—C16—C15 178.58 (14)
C1—C6—C7—N1 166.67 (15) C14—C15—C16—N2 −179.69 (15)
C5—C6—C7—N1 −15.5 (2) C10—C15—C16—N2 −1.8 (3)
C7—N1—C8—C9 119.39 (16) C16—N2—C17—C18 118.07 (16)
N1—C8—C9—C9i −66.7 (2) N2—C17—C18—C18ii −66.8 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···F3iii 0.95 2.43 3.137 (2) 131
C7—H7···F1iv 0.95 2.54 3.378 (2) 148
C12—H12···F2 0.95 2.42 3.192 (2) 138

Symmetry codes: (iii) x+1, y+1, z; (iv) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2336).

References

  1. Bruker (2005). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. [DOI] [PubMed]
  3. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta. Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044801/su2336sup1.cif

e-67-o3108-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044801/su2336Isup2.hkl

e-67-o3108-Isup2.hkl (138.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811044801/su2336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES