Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):o3114. doi: 10.1107/S1600536811043923

4-Nitro­phenyl 4-bromo­benzoate

Rodolfo Moreno-Fuquen a,*
PMCID: PMC3247499  PMID: 22220117

Abstract

In the crystal structure of the title compound, C13H8BrNO4, mol­ecules are linked into chains along [101] by weak C—H⋯O hydrogen bonds and Br⋯O contacts [3.140 (4) Å]. The planes of the nitrated and brominated aryl rings form a dihedral angle of 64.98 (10)°, indicating a twist in the mol­ecule.

Related literature

For background to the applications of aromatic esters containing nitro groups, see: Jefford & Zaslona (1985). For mol­ecular and supra­molecular structures of nitroaryl compounds, see: Wardell et al. (2005); Jefford et al., (1986). For halogen bonding, see: Politzer et al. (2010); Ritter (2009). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990).graphic file with name e-67-o3114-scheme1.jpg

Experimental

Crystal data

  • C13H8BrNO4

  • M r = 322.11

  • Monoclinic, Inline graphic

  • a = 8.8177 (4) Å

  • b = 9.5279 (5) Å

  • c = 14.9394 (5) Å

  • β = 99.024 (3)°

  • V = 1239.59 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 293 K

  • 0.55 × 0.31 × 0.23 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.250, T max = 0.361

  • 9341 measured reflections

  • 2648 independent reflections

  • 1918 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.137

  • S = 1.02

  • 2648 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043923/hg5114sup1.cif

e-67-o3114-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043923/hg5114Isup2.hkl

e-67-o3114-Isup2.hkl (130.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043923/hg5114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O4i 0.93 2.69 3.543 (6) 153
C3—H3⋯O3ii 0.93 2.60 3.335 (5) 136
C13—H13⋯O3iii 0.93 2.67 3.460 (5) 143
C12—H12⋯O1iv 0.93 2.50 3.237 (5) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Thanks are given to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Crystallographic Database (CSD; Allen, 2002). The author also thanks the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

Comment

Aromatic esters containing nitro groups in their aromatic rings can be used as precursors for the preparation of compounds with potential analgesic and anti-inflammatory properties (Jefford & Zaslona, 1985). Molecular and supramolecular structures of a wide range of nitroaryl compounds have been reported (Wardell et al., 2005 and Jefford et al., 1986).

In order to complement the structural information on nitroaryl compounds the title ester, 4-nitrophenyl bromobenzoate (I) was synthesized. A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The central ester fragment between atoms C4 and C8 is effectively planar. The nitrated and brominated aryl rings form a dihedral angle of 64.98 (10)°, indicating a twist in the molecule. The nitro group forms a dihedral angle of 2.7 (5)° with the adjacent aryl ring. Halogen bonding, an electrostatically driven higly directional noncovalent interaction, that can be important for its potential in the development of new materials and pharmaceutical compounds (Politzer et al., 2010 and Ritter, 2009) can be observed in the present structure. Indeed, the Br···O contacts along [101] with a Br1···O3iii, (iii: x - 1,+y,+z + 1) distance of 3.140 (4) Å, showing the formation of an infinite chain is detected (see Fig. 2). Other C—H···O weak hydrogen bonds (see Table 1, Nardelli, 1995) that complement the crystal packing can also be seen in this figure. The propagation of these interactions forms R33(30), R44(24) and R22(14) rings (Etter, 1990) along this direction.

Experimental

Solution containing equimolar quantities (3.2 mmol) of 4-bromobenzoyl chloride and 4-nitrophenol in acetonitrile (60 ml) was gradually heated under reflux for 2 h. At room temperature, triethylamine was added, to get a solid which was poured in cold water. The solid was recrystallized in dichlorometane to yield excellent yellow crystals suitable for single-crystal X-ray diffraction. M.p. 431 (1) K.

Refinement

The H-atoms were placed geometrically [C—H= 0.93 Å, Uiso(H) (1.2 times Ueq of the parent atom].

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of a one dimensional sheet along [101]. Symmetry code: (i) -x,-y,-z + 1; (ii) -x,+y + 1/2,-z + 1/2; (iii) x - 1,+y,+z + 1.

Crystal data

C13H8BrNO4 F(000) = 640
Mr = 322.11 Dx = 1.726 Mg m3
Monoclinic, P21/c Melting point: 431(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 8.8177 (4) Å Cell parameters from 5487 reflections
b = 9.5279 (5) Å θ = 2.9–27.1°
c = 14.9394 (5) Å µ = 3.33 mm1
β = 99.024 (3)° T = 293 K
V = 1239.59 (10) Å3 Block, pale-yellow
Z = 4 0.55 × 0.31 × 0.23 mm

Data collection

Bruker–Nonius KappaCCD diffractometer 2648 independent reflections
Radiation source: fine-focus sealed tube 1918 reflections with I > 2σ(I)
graphite Rint = 0.070
ω scans θmax = 27.1°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→11
Tmin = 0.250, Tmax = 0.361 k = −11→11
9341 measured reflections l = −19→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.6227P] where P = (Fo2 + 2Fc2)/3
2648 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 1.07826 (4) 0.25892 (4) 1.01950 (2) 0.0659 (2)
O2 0.6701 (3) 0.1952 (3) 0.59586 (16) 0.0569 (6)
C1 0.9755 (4) 0.2726 (4) 0.8984 (2) 0.0507 (8)
O1 0.7563 (3) 0.4159 (3) 0.58276 (16) 0.0606 (6)
C4 0.8266 (4) 0.2946 (3) 0.7227 (2) 0.0457 (7)
C8 0.5953 (4) 0.1968 (4) 0.5064 (2) 0.0480 (7)
C11 0.4518 (4) 0.1846 (4) 0.3321 (2) 0.0504 (8)
C10 0.5615 (4) 0.0861 (4) 0.3623 (2) 0.0552 (8)
H10 0.5859 0.0161 0.3235 0.066*
N1 0.3778 (5) 0.1834 (4) 0.2373 (2) 0.0694 (9)
C7 0.7503 (4) 0.3138 (4) 0.6281 (2) 0.0485 (7)
C5 0.9242 (4) 0.4006 (4) 0.7604 (3) 0.0594 (9)
H5 0.9388 0.4796 0.7261 0.071*
C2 0.8757 (4) 0.1668 (4) 0.8629 (2) 0.0527 (8)
H2 0.8587 0.0893 0.8978 0.063*
C3 0.8023 (4) 0.1793 (3) 0.7748 (2) 0.0499 (8)
H3 0.7354 0.1090 0.7499 0.060*
C6 0.9997 (5) 0.3897 (4) 0.8482 (2) 0.0631 (10)
H6 1.0659 0.4603 0.8732 0.076*
C9 0.6350 (4) 0.0922 (3) 0.4507 (2) 0.0535 (8)
H9 0.7101 0.0268 0.4724 0.064*
C13 0.4817 (4) 0.2937 (4) 0.4769 (2) 0.0554 (8)
H13 0.4546 0.3616 0.5162 0.066*
O3 0.4181 (5) 0.0922 (4) 0.18766 (19) 0.0955 (11)
C12 0.4100 (5) 0.2880 (4) 0.3889 (3) 0.0580 (9)
H12 0.3340 0.3527 0.3674 0.070*
O4 0.2819 (6) 0.2721 (4) 0.2116 (3) 0.1064 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0611 (3) 0.0868 (3) 0.0476 (3) −0.00760 (19) 0.00100 (18) −0.00065 (17)
O2 0.0682 (16) 0.0504 (12) 0.0479 (13) −0.0114 (12) −0.0034 (11) 0.0040 (11)
C1 0.0421 (17) 0.062 (2) 0.0475 (18) 0.0014 (14) 0.0051 (14) −0.0012 (14)
O1 0.0684 (17) 0.0519 (14) 0.0599 (14) −0.0047 (11) 0.0054 (12) 0.0080 (11)
C4 0.0445 (17) 0.0475 (16) 0.0456 (17) 0.0002 (14) 0.0079 (14) −0.0012 (14)
C8 0.0480 (19) 0.0511 (17) 0.0434 (16) −0.0075 (14) 0.0029 (14) 0.0044 (14)
C11 0.059 (2) 0.0515 (18) 0.0408 (16) −0.0151 (16) 0.0091 (15) 0.0008 (14)
C10 0.067 (2) 0.0478 (18) 0.0534 (19) −0.0115 (16) 0.0189 (17) −0.0075 (14)
N1 0.094 (3) 0.067 (2) 0.0456 (17) −0.030 (2) 0.0054 (17) 0.0047 (16)
C7 0.0460 (18) 0.0476 (18) 0.0531 (19) −0.0014 (14) 0.0112 (15) −0.0003 (15)
C5 0.060 (2) 0.058 (2) 0.059 (2) −0.0160 (17) 0.0039 (16) 0.0070 (16)
C2 0.058 (2) 0.0476 (18) 0.0524 (18) 0.0002 (15) 0.0073 (16) −0.0007 (14)
C3 0.054 (2) 0.0441 (17) 0.0509 (18) −0.0044 (14) 0.0059 (15) −0.0034 (14)
C6 0.061 (2) 0.067 (2) 0.059 (2) −0.0197 (18) 0.0020 (18) −0.0030 (17)
C9 0.057 (2) 0.0445 (17) 0.059 (2) −0.0004 (15) 0.0105 (16) 0.0020 (14)
C13 0.056 (2) 0.0594 (19) 0.050 (2) 0.0043 (17) 0.0057 (16) −0.0083 (16)
O3 0.148 (3) 0.092 (2) 0.0467 (15) −0.027 (2) 0.0140 (18) −0.0131 (15)
C12 0.057 (2) 0.062 (2) 0.053 (2) 0.0049 (17) 0.0034 (17) 0.0015 (16)
O4 0.137 (4) 0.105 (3) 0.063 (2) 0.011 (2) −0.028 (2) 0.0082 (17)

Geometric parameters (Å, °)

Br—C1 1.896 (4) C10—C9 1.379 (5)
O2—C7 1.379 (4) C10—H10 0.9300
O2—C8 1.394 (4) N1—O4 1.214 (5)
C1—C6 1.380 (5) N1—O3 1.230 (5)
C1—C2 1.387 (5) C5—C6 1.379 (5)
O1—C7 1.192 (4) C5—H5 0.9300
C4—C3 1.383 (5) C2—C3 1.378 (5)
C4—C5 1.388 (5) C2—H2 0.9300
C4—C7 1.477 (5) C3—H3 0.9300
C8—C9 1.378 (5) C6—H6 0.9300
C8—C13 1.383 (5) C9—H9 0.9300
C11—C10 1.372 (5) C13—C12 1.367 (5)
C11—C12 1.387 (5) C13—H13 0.9300
C11—N1 1.465 (4) C12—H12 0.9300
C7—O2—C8 117.8 (3) C6—C5—C4 120.5 (3)
C6—C1—C2 121.5 (3) C6—C5—H5 119.8
C6—C1—Br 118.9 (3) C4—C5—H5 119.8
C2—C1—Br 119.6 (3) C3—C2—C1 118.5 (3)
C3—C4—C5 119.4 (3) C3—C2—H2 120.7
C3—C4—C7 123.3 (3) C1—C2—H2 120.7
C5—C4—C7 117.3 (3) C2—C3—C4 121.0 (3)
C9—C8—C13 122.0 (3) C2—C3—H3 119.5
C9—C8—O2 116.4 (3) C4—C3—H3 119.5
C13—C8—O2 121.5 (3) C5—C6—C1 119.0 (3)
C10—C11—C12 121.8 (3) C5—C6—H6 120.5
C10—C11—N1 119.8 (3) C1—C6—H6 120.5
C12—C11—N1 118.4 (4) C8—C9—C10 118.9 (3)
C11—C10—C9 119.1 (3) C8—C9—H9 120.5
C11—C10—H10 120.4 C10—C9—H9 120.5
C9—C10—H10 120.4 C12—C13—C8 118.9 (3)
O4—N1—O3 123.6 (4) C12—C13—H13 120.5
O4—N1—C11 118.9 (4) C8—C13—H13 120.5
O3—N1—C11 117.5 (4) C13—C12—C11 119.2 (4)
O1—C7—O2 122.4 (3) C13—C12—H12 120.4
O1—C7—C4 126.2 (3) C11—C12—H12 120.4
O2—C7—C4 111.4 (3)
C7—O2—C8—C9 123.0 (3) C6—C1—C2—C3 1.3 (5)
C7—O2—C8—C13 −60.4 (4) Br—C1—C2—C3 179.9 (3)
C12—C11—C10—C9 −1.7 (5) C1—C2—C3—C4 −0.3 (5)
N1—C11—C10—C9 177.2 (3) C5—C4—C3—C2 −1.2 (5)
C10—C11—N1—O4 −179.4 (4) C7—C4—C3—C2 −179.6 (3)
C12—C11—N1—O4 −0.4 (6) C4—C5—C6—C1 −0.7 (6)
C10—C11—N1—O3 0.0 (5) C2—C1—C6—C5 −0.9 (6)
C12—C11—N1—O3 178.9 (4) Br—C1—C6—C5 −179.5 (3)
C8—O2—C7—O1 0.6 (5) C13—C8—C9—C10 1.5 (5)
C8—O2—C7—C4 −178.4 (3) O2—C8—C9—C10 178.1 (3)
C3—C4—C7—O1 173.0 (4) C11—C10—C9—C8 0.4 (5)
C5—C4—C7—O1 −5.4 (5) C9—C8—C13—C12 −2.0 (6)
C3—C4—C7—O2 −8.0 (5) O2—C8—C13—C12 −178.5 (3)
C5—C4—C7—O2 173.5 (3) C8—C13—C12—C11 0.7 (6)
C3—C4—C5—C6 1.7 (6) C10—C11—C12—C13 1.2 (6)
C7—C4—C5—C6 −179.8 (4) N1—C11—C12—C13 −177.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···O4i 0.93 2.69 3.543 (6) 153.
C3—H3···O3ii 0.93 2.60 3.335 (5) 136.
C13—H13···O3iii 0.93 2.67 3.460 (5) 143.
C12—H12···O1iv 0.93 2.50 3.237 (5) 137.

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5114).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Jefford, C. W., Kubota, T. & Zaslona, A. (1986). Helv. Chim. Acta, 69, 2048–2061.
  6. Jefford, C. W. & Zaslona, A. (1985). Tetrahedron Lett. 26, 6035–6038.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Politzer, P., Murray, J. S. & Clark, T. (2010). Phys. Chem. Chem. Phys. 12, 7748–7757. [DOI] [PubMed]
  12. Ritter, S. K. (2009). Sci. Technol. 87, 39–42.
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3334–o3336.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043923/hg5114sup1.cif

e-67-o3114-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043923/hg5114Isup2.hkl

e-67-o3114-Isup2.hkl (130.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811043923/hg5114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES