Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):m1605. doi: 10.1107/S1600536811043236

1-Methyl­piperazine-1,4-diium tetra­chloridozincate hemihydrate

Sondra Walha a, Houcine Naïli a,*, Samia Yahyaoui a, Tahar Mhiri a
PMCID: PMC3247527  PMID: 22219832

Abstract

The crystal structure of the title compound, (C5H14N2)[ZnCl4]·0.5H2O, is built up from discrete 1-methyl­piperazine­diium cations with chair conformation, tetrahedral tetrachloridozincate anions and uncoordinated solvent water mol­ecules linked together by three types of inter­molecular hydrogen bonds, viz. N—H⋯Cl, N—H⋯O and O—H⋯Cl.

Related literature

For background on organic–inorganic hybrid materials, see: Lacroix et al. (1994); Mitzi (2001); Pecaut et al. (1993). For related structures, see: Deeth et al. (1984); Fowkes & Harrison (2004); Walha et al. (2010, 2011).graphic file with name e-67-m1605-scheme1.jpg

Experimental

Crystal data

  • (C5H14N2)[ZnCl4]·0.5H2O

  • M r = 318.36

  • Monoclinic, Inline graphic

  • a = 14.3210 (5) Å

  • b = 12.7590 (5) Å

  • c = 13.7970 (3) Å

  • β = 102.821 (3)°

  • V = 2458.16 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 293 K

  • 0.47 × 0.11 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965) T min = 0.393, T max = 0.661

  • 27355 measured reflections

  • 4237 independent reflections

  • 2996 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.080

  • S = 1.24

  • 4237 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043236/zq2122sup1.cif

e-67-m1605-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043236/zq2122Isup2.hkl

e-67-m1605-Isup2.hkl (203.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn—Cl1 2.2449 (8)
Zn—Cl2 2.2614 (7)
Zn—Cl4 2.2615 (8)
Zn—Cl3 2.3004 (7)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl4i 0.91 2.31 3.189 (2) 164
N2—H3⋯Cl3ii 0.96 2.57 3.353 (2) 139
N2—H3⋯Cl2ii 0.96 2.69 3.259 (2) 119
O—HW1⋯Cl3 0.96 2.33 3.2692 (12) 167
N2—H2⋯O 0.96 1.95 2.908 (3) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Grateful thanks are expressed to Dr J. Jaud (Service Rayons X, CEMES/CNRS Toulouse) for the X-ray data collection.

supplementary crystallographic information

Comment

Preparation of organic-inorganic hybrid materials attracts great attention in chemistry and materials sciences because of their abilities to combine the properties of organic and inorganic compounds within one single molecular scale, such as second-order nonlinear optical (NLO) response, luminescence, magnetism and even multifonctional properties (Mitzi, 2001; Pecaut et al., 1993; Lacroix et al., 1994). In connection with ongoing studies (Walha et al., 2010; Walha et al., 2011), we report here the crystal structure of a new organic-inorganic hybrid with cations and tetrachloridozincate anions.

The asymmetric unit of the title compound (Fig. 1) contains one inorganic ZnCl42- anion, one organic N-methylpiperazinediium cation and one half-molecule of water, which lies on a two-fold rotation axis. The isolated molecules form organic-inorganic layers parallels to the (b,c) plane and alternate along the a axis (Fig. 2). These layers are stabilized and interconnected by three types of hydrogen bonds: N—H···Cl, N—H···O and O—H···Cl. The anion exhibits a tetrahedral geometry with the ZnII ion surrounded by four Cl atoms with a mean Zn—Cl bond length of 2.267 (2) Å and Cl—Zn—Cl bond angles ranging from 106.24 (3) to 112.42 (3)° (Deeth et al., 1984). The ZnCl4 tetrahedra are linked to water molecules into zig-zag chains by O—H···Cl hydrogen bonds along the c axis, as illustrated in Fig. 3. The organic species adopts a typical chair conformation with average C—C and C—N of 1.501 (4) and 1.491 (3) Å, respectively (Fowkes & Harrison, 2004). The water molecules are located above and below the layers and they connect them via hydrogen bonds. Indeed, they participate in two types of hydrogen bonds O—H···Cl and N—H···O as donor or acceptor, respectively (Table 2), playing a subordinative role in the stabilization of the crystal structure.

Experimental

ZnCl2 (1 mmol) and methylpiperazine dihydrochloride (1 mmol) were dissolved in water. The solution was mixed with hydrochloric acid (1 mmol) and allowed to stand. Colourless plate-shaped crystals of the title compound were formed by slow evaporation of the solvent and separated from the solution after three days.

Refinement

H atoms bonded to C and N atoms were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.96 Å, N—H = 0.89 Å and Uiso = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with the non-H atoms represented by 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Projection of the crystal structure of the title compound along the b axis, with hydrogen bonds indicated as dashed lines.

Fig. 3.

Fig. 3.

Zig-zag chains formed by the interactions of ZnCl4 and H2O molecules with O—H···Cl hydrogen bonds along the c axis.

Crystal data

(C5H14N2)[ZnCl4]·0.5H2O Z = 8
Mr = 318.36 F(000) = 1288
Monoclinic, C2/c Dx = 1.720 Mg m3
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 14.3210 (5) Å θ = 3.5–32.0°
b = 12.7590 (5) Å µ = 2.83 mm1
c = 13.7970 (3) Å T = 293 K
β = 102.821 (3)° Plate-shaped, colourless
V = 2458.16 (14) Å3 0.47 × 0.11 × 0.03 mm

Data collection

Nonius KappaCCD diffractometer 4237 independent reflections
Radiation source: fine-focus sealed tube 2996 reflections with I > 2σ(I)
graphite Rint = 0.000
Detector resolution: 9 pixels mm-1 θmax = 32.0°, θmin = 3.5°
CCD rotation images, thick slices scans h = −21→20
Absorption correction: analytical (de Meulenaer & Tompa, 1965) k = 0→19
Tmin = 0.393, Tmax = 0.661 l = 0→20
4237 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0157P)2 + 3.8346P] where P = (Fo2 + 2Fc2)/3
S = 1.24 (Δ/σ)max < 0.001
4237 reflections Δρmax = 0.49 e Å3
115 parameters Δρmin = −0.68 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0000

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.01435 (2) 0.25139 (2) 0.52565 (2) 0.02734 (8)
Cl1 −0.08951 (5) 0.20675 (6) 0.61886 (5) 0.04259 (18)
Cl3 0.14474 (5) 0.34080 (6) 0.61526 (5) 0.03835 (16)
Cl2 −0.05717 (5) 0.35910 (7) 0.40099 (6) 0.0468 (2)
Cl4 0.07327 (5) 0.11031 (6) 0.45991 (5) 0.04292 (19)
N2 0.14425 (16) 0.5183 (2) 0.90999 (19) 0.0396 (6)
H3 0.1119 0.5425 0.9598 0.048*
H2 0.0992 0.4842 0.8576 0.048*
N1 0.31874 (14) 0.49919 (18) 0.83935 (15) 0.0288 (5)
H1 0.3598 0.5316 0.8904 0.035*
C1 0.27548 (19) 0.4078 (2) 0.8808 (2) 0.0326 (6)
H1A 0.3258 0.3607 0.9112 0.039*
H1B 0.2325 0.3726 0.8274 0.039*
C2 0.2207 (2) 0.4431 (2) 0.9561 (2) 0.0360 (6)
H2A 0.1925 0.3832 0.9804 0.043*
H2B 0.2644 0.4764 1.0101 0.043*
C3 0.1851 (2) 0.6107 (2) 0.8677 (2) 0.0424 (7)
H3B 0.2258 0.6492 0.9203 0.051*
H3A 0.1339 0.6550 0.8341 0.051*
C4 0.2429 (2) 0.5757 (2) 0.7943 (2) 0.0344 (6)
H4A 0.2004 0.5427 0.7391 0.041*
H4B 0.2719 0.6359 0.7714 0.041*
C5 0.3743 (2) 0.4655 (3) 0.7650 (2) 0.0464 (8)
H5A 0.3369 0.4268 0.7103 0.056*
H5B 0.4265 0.4215 0.7970 0.056*
H5C 0.3991 0.5263 0.7382 0.056*
O 0.0000 0.4275 (2) 0.7500 0.0420 (7)
HW1 0.0338 0.3954 0.7050 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.02624 (14) 0.02913 (16) 0.02555 (15) 0.00289 (13) 0.00340 (10) 0.00195 (13)
Cl1 0.0478 (4) 0.0476 (4) 0.0363 (4) −0.0085 (3) 0.0176 (3) 0.0033 (3)
Cl3 0.0348 (3) 0.0437 (4) 0.0338 (4) −0.0077 (3) 0.0017 (3) −0.0049 (3)
Cl2 0.0306 (3) 0.0632 (5) 0.0451 (4) 0.0098 (3) 0.0053 (3) 0.0291 (4)
Cl4 0.0473 (4) 0.0451 (4) 0.0321 (4) 0.0176 (3) −0.0002 (3) −0.0089 (3)
N2 0.0286 (12) 0.0513 (16) 0.0420 (14) −0.0053 (11) 0.0141 (10) −0.0153 (12)
N1 0.0209 (10) 0.0452 (14) 0.0197 (10) −0.0038 (9) 0.0030 (8) 0.0009 (9)
C1 0.0307 (13) 0.0359 (15) 0.0315 (14) 0.0033 (11) 0.0074 (11) 0.0070 (11)
C2 0.0350 (14) 0.0465 (18) 0.0285 (14) −0.0083 (13) 0.0117 (11) 0.0023 (12)
C3 0.0401 (16) 0.0379 (17) 0.0486 (18) 0.0067 (13) 0.0088 (13) −0.0043 (14)
C4 0.0363 (14) 0.0353 (16) 0.0305 (14) 0.0031 (12) 0.0054 (11) 0.0054 (12)
C5 0.0294 (14) 0.081 (2) 0.0313 (15) 0.0083 (15) 0.0129 (12) 0.0041 (15)
O 0.0452 (17) 0.0406 (17) 0.0374 (16) 0.000 0.0033 (13) 0.000

Geometric parameters (Å, °)

Zn—Cl1 2.2449 (8) C1—H1A 0.9600
Zn—Cl2 2.2614 (7) C1—H1B 0.9599
Zn—Cl4 2.2615 (8) C2—H2A 0.9599
Zn—Cl3 2.3004 (7) C2—H2B 0.9601
N2—C2 1.488 (4) C3—C4 1.511 (4)
N2—C3 1.490 (4) C3—H3B 0.9599
N2—H3 0.9600 C3—H3A 0.9599
N2—H2 0.9599 C4—H4A 0.9601
N1—C4 1.489 (3) C4—H4B 0.9600
N1—C1 1.492 (3) C5—H5A 0.9601
N1—C5 1.494 (3) C5—H5B 0.9599
N1—H1 0.9100 C5—H5C 0.9601
C1—C2 1.503 (4) O—HW1 0.9600
Cl1—Zn—Cl2 110.12 (3) N2—C2—C1 110.2 (2)
Cl1—Zn—Cl4 112.42 (3) N2—C2—H2A 109.6
Cl2—Zn—Cl4 108.97 (3) C1—C2—H2A 109.2
Cl1—Zn—Cl3 112.33 (3) N2—C2—H2B 109.7
Cl2—Zn—Cl3 106.50 (3) C1—C2—H2B 108.6
Cl4—Zn—Cl3 106.24 (3) H2A—C2—H2B 109.5
C2—N2—C3 111.2 (2) N2—C3—C4 110.5 (2)
C2—N2—H3 109.1 N2—C3—H3B 109.6
C3—N2—H3 108.6 C4—C3—H3B 109.1
C2—N2—H2 109.7 N2—C3—H3A 109.4
C3—N2—H2 108.7 C4—C3—H3A 108.9
H3—N2—H2 109.5 H3B—C3—H3A 109.5
C4—N1—C1 110.2 (2) N1—C4—C3 111.8 (2)
C4—N1—C5 110.6 (2) N1—C4—H4A 108.6
C1—N1—C5 111.6 (2) C3—C4—H4A 108.4
C4—N1—H1 108.1 N1—C4—H4B 109.5
C1—N1—H1 108.1 C3—C4—H4B 109.1
C5—N1—H1 108.1 H4A—C4—H4B 109.5
N1—C1—C2 110.8 (2) N1—C5—H5A 113.4
N1—C1—H1A 108.8 N1—C5—H5B 109.4
C2—C1—H1A 110.0 H5A—C5—H5B 107.6
N1—C1—H1B 108.7 N1—C5—H5C 109.3
C2—C1—H1B 109.0 H5A—C5—H5C 107.6
H1A—C1—H1B 109.5 H5B—C5—H5C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl4i 0.91 2.31 3.189 (2) 164.
N2—H3···Cl3ii 0.96 2.57 3.353 (2) 139.
N2—H3···Cl2ii 0.96 2.69 3.259 (2) 119.
O—HW1···Cl3 0.96 2.33 3.2692 (12) 167.
N2—H2···O 0.96 1.95 2.908 (3) 174.

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2122).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Fowkes, A. & Harrison, W. T. A. (2004). Acta Cryst. E60, m59–m61.
  5. Lacroix, P. G., Clément, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658–660. [DOI] [PubMed]
  6. Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.
  7. Mitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1–12.
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Pecaut, J., Levy, J. P. & Masse, R. (1993). J. Mater. Chem. 3, 999–1003.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Walha, S., Naili, H., Yahyaoui, S., Ali, B. F., Turnbull, M. M., Mhiri, T. & Bataille, T. (2011). Solid State Sci. 13, 204-208.
  13. Walha, S., Yahyaoui, S., Naili, H., Mhiri, T. & Bataille, T. (2010). J. Coord. Chem. pp. 1358–1368.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043236/zq2122sup1.cif

e-67-m1605-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043236/zq2122Isup2.hkl

e-67-m1605-Isup2.hkl (203.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES