Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):m1614. doi: 10.1107/S1600536811043820

The low-temperature structure of diethyl ether magnesium oxybromide

Hannes Vitze a, Hans-Wolfram Lerner a, Michael Bolte a,*
PMCID: PMC3247535  PMID: 22219840

Abstract

The crystal structure of the title compound, hexa-μ2-bromido-μ4-oxido-tetra­kis­[(diethyl ether)magnesium], [Mg4Br6O(C4H10O)4], determined from data measured at 173 K, differs from the previously known structure of diethyl ether magnesium oxybromide, which was determined from room-temperature data [Stucky & Rundle (1964). J. Am. Chem. Soc. 86, 4821–4825]. The title compound crystallizes in the tetra­gonal space group I Inline graphic, whereas the previously known structure crystallizes in a different tetra­gonal space group, namely P Inline graphic21 c. Both molecules have crystallographic Inline graphic symmetry and show almost identical geometric parameters for the Mg, Br and O atoms. The crystal of the title compound turned out to be a merohedral twin emulating a structure with apparent Laue symmetry 4/mmm, whereas the correct Laue group is just 4/m. The fractional contribution of the minor twin component converged to 0.462 (1).

Related literature

For Mg–Br complexes, see: Lerner (2005); Lerner et al. (2003); Metzler et al. (1994). For a polymorph of the title compound, see: Stucky & Rundle (1964). For the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-m1614-scheme1.jpg

Experimental

Crystal data

  • [Mg4Br6O(C4H10O)4]

  • M r = 889.18

  • Tetragonal, Inline graphic

  • a = 10.4630 (13) Å

  • c = 15.276 (2) Å

  • V = 1672.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.30 mm−1

  • T = 173 K

  • 0.25 × 0.22 × 0.18 mm

Data collection

  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan [MULABS (Spek, 2009; Blessing, 1995)] T min = 0.169, T max = 0.269

  • 3746 measured reflections

  • 1479 independent reflections

  • 1455 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.067

  • S = 1.08

  • 1479 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983), 689 Friedel pairs

  • Flack parameter: −0.02 (2)

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043820/bh2385sup1.cif

e-67-m1614-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043820/bh2385Isup2.hkl

e-67-m1614-Isup2.hkl (73.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The solid-state structures of Mg–Br compounds feature coordination numbers of the Mg center from four as in [MgBr(SitBu3)(THF)]2 (Lerner et al., 2003; Lerner, 2005) to six as in [MgBr2(THF)4] (Metzler et al., 1994). Most of the Mg–Br compounds possess an octahedral coordination sphere which surrounds the Mg cation whereas only a few compounds are found in the Cambridge Structural Database (Allen, 2002) with five-coordinated Mg centers as found in the solid-state structure of the title compound. We report here the X-ray crystal structure analysis of [(MgOEt2)4Br6O], which could be isolated from a solution of C6F5MgBr in Et2O.

Data for the crystal structure of the title compound were collected at 173 K. It crystallizes in the tetragonal space group I4 with crystallographic 4 symmetry. The previously known polymorph (Stucky & Rundle, 1964) for which data were collected at room temperature crystallizes in the space group P421c and has crystallographic 4 symmetry, too. However, in the latter structure there is severe disorder of the C atoms, whereas in the title compound, no disorder was found. The geometric parameters involving Mg, Br and O atoms agree well in both structures.

Since the structures show striking similarities and were measured at different temperatures, a phase transition between them cannot be excluded.

Experimental

To a suspension of Mg turnings (0.5 g, 20.2 mmol) in 25 ml Et2O, 2.3 ml C6F5Br is added dropwise. The reaction starts when 0.3 ml of C6F5Br have been added. The rest of C6F5Br is added dropwise at such a rate that the reaction mixture remains at its boiling point and refluxing is continued for 1 h until the magnesium turnings have dissolved completely. During the storing of this solution for 3 weeks, colorless crystals of the title compound were grown at room temperature.

Refinement

H atoms could be located in a difference Fourier map, but they were refined using a riding model with isotropic displacement parameters Uiso(H) set to 1.2Ueq(Cmethylene) and C—H = 0.99 Å or Uiso(H) set to 1.5Ueq(Cmethyl) and C—H = 0.98 Å. The crystal turned out to be a merohedral twin emulating a structure with Laue symmetry 4/mmm. The twin law (0 1 0/1 0 0/0 0 1) is a twofold rotation about the diagonal between the a and b axis and the fractional contribution of the minor twin component refined to 0.462 (1).

Figures

Fig. 1.

Fig. 1.

Perspective view of the title compound with displacement ellipsoids at the 50% probability level. H atoms are omitted for clarity. Symmetry operators for generating equivalent atoms: (A): 1 - x, -y z; (B): 1/2 + y, 1/2 - x, 1/2 - z; (C): 1/2 - y, -1/2 + x, 1/2 - z.

Crystal data

[Mg4Br6O(C4H10O)4] Dx = 1.766 Mg m3
Mr = 889.18 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 3746 reflections
Hall symbol: I -4 θ = 3.8–25.6°
a = 10.4630 (13) Å µ = 7.30 mm1
c = 15.276 (2) Å T = 173 K
V = 1672.3 (4) Å3 Block, colourless
Z = 2 0.25 × 0.22 × 0.18 mm
F(000) = 868

Data collection

Stoe IPDS II two-circle diffractometer 1479 independent reflections
Radiation source: fine-focus sealed tube 1455 reflections with I > 2σ(I)
graphite Rint = 0.044
ω scans θmax = 25.3°, θmin = 3.8°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) h = −12→12
Tmin = 0.169, Tmax = 0.269 k = −8→12
3746 measured reflections l = −13→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.284P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.62 e Å3
1479 reflections Δρmin = −0.56 e Å3
73 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0036 (4)
0 constraints Absolute structure: Flack (1983), with 689 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (2)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mg1 0.40713 (19) 0.12350 (19) 0.32357 (13) 0.0135 (5)
Br1 0.5000 0.0000 0.45892 (4) 0.01815 (19)
Br2 0.19607 (5) 0.04477 (5) 0.24533 (6) 0.02114 (18)
O1 0.5000 0.0000 0.2500 0.0120 (13)
C1 0.2012 (10) 0.4180 (8) 0.3236 (7) 0.044 (2)
H1A 0.1953 0.5113 0.3196 0.065*
H1B 0.1161 0.3823 0.3348 0.065*
H1C 0.2345 0.3836 0.2685 0.065*
C2 0.2906 (8) 0.3818 (7) 0.3982 (6) 0.0286 (17)
H2A 0.3759 0.4195 0.3875 0.034*
H2B 0.2573 0.4174 0.4538 0.034*
O2 0.3026 (5) 0.2433 (5) 0.4064 (3) 0.0210 (10)
C3 0.2032 (8) 0.1864 (7) 0.4613 (5) 0.0289 (16)
H3A 0.1932 0.0953 0.4453 0.035*
H3B 0.1210 0.2299 0.4495 0.035*
C4 0.2326 (9) 0.1958 (10) 0.5579 (5) 0.040 (2)
H4A 0.1629 0.1570 0.5915 0.061*
H4B 0.2413 0.2859 0.5744 0.061*
H4C 0.3126 0.1507 0.5704 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mg1 0.0173 (10) 0.0158 (10) 0.0075 (9) 0.0031 (8) 0.0010 (8) −0.0015 (8)
Br1 0.0265 (7) 0.0226 (6) 0.0054 (3) 0.0057 (6) 0.000 0.000
Br2 0.0149 (3) 0.0285 (3) 0.0200 (3) 0.0026 (2) −0.0018 (4) −0.0064 (4)
O1 0.0150 (18) 0.0150 (18) 0.006 (3) 0.000 0.000 0.000
C1 0.056 (5) 0.035 (4) 0.040 (5) 0.020 (4) −0.001 (5) 0.002 (4)
C2 0.038 (4) 0.015 (3) 0.032 (4) 0.010 (3) 0.004 (3) −0.008 (3)
O2 0.024 (2) 0.023 (2) 0.015 (2) 0.005 (2) 0.008 (2) −0.0037 (19)
C3 0.029 (4) 0.027 (4) 0.031 (4) 0.009 (3) 0.013 (3) 0.001 (4)
C4 0.051 (6) 0.056 (6) 0.014 (4) 0.027 (5) 0.009 (3) −0.004 (4)

Geometric parameters (Å, °)

Mg1—O1 1.969 (2) C1—H1A 0.9800
Mg1—O2 2.090 (5) C1—H1B 0.9800
Mg1—Br2i 2.597 (2) C1—H1C 0.9800
Mg1—Br1 2.625 (2) C2—O2 1.460 (8)
Mg1—Br2 2.643 (2) C2—H2A 0.9900
Mg1—Mg1i 3.206 (3) C2—H2B 0.9900
Mg1—Mg1ii 3.206 (3) O2—C3 1.463 (9)
Mg1—Mg1iii 3.233 (4) C3—C4 1.510 (11)
Br1—Mg1iii 2.625 (2) C3—H3A 0.9900
Br2—Mg1ii 2.597 (2) C3—H3B 0.9900
O1—Mg1iii 1.9689 (19) C4—H4A 0.9800
O1—Mg1i 1.969 (2) C4—H4B 0.9800
O1—Mg1ii 1.969 (2) C4—H4C 0.9800
C1—C2 1.523 (12)
O1—Mg1—O2 175.84 (18) Mg1—O1—Mg1i 109.01 (6)
O1—Mg1—Br2i 88.40 (7) Mg1iii—O1—Mg1ii 109.01 (6)
O2—Mg1—Br2i 95.71 (15) Mg1—O1—Mg1ii 109.01 (6)
O1—Mg1—Br1 86.78 (7) Mg1i—O1—Mg1ii 110.39 (12)
O2—Mg1—Br1 90.70 (16) C2—C1—H1A 109.5
Br2i—Mg1—Br1 118.15 (8) C2—C1—H1B 109.5
O1—Mg1—Br2 87.12 (7) H1A—C1—H1B 109.5
O2—Mg1—Br2 91.33 (16) C2—C1—H1C 109.5
Br2i—Mg1—Br2 120.44 (8) H1A—C1—H1C 109.5
Br1—Mg1—Br2 120.81 (8) H1B—C1—H1C 109.5
O1—Mg1—Mg1i 35.49 (3) O2—C2—C1 111.3 (6)
O2—Mg1—Mg1i 148.63 (17) O2—C2—H2A 109.4
Br2i—Mg1—Mg1i 52.92 (7) C1—C2—H2A 109.4
Br1—Mg1—Mg1i 103.98 (7) O2—C2—H2B 109.4
Br2—Mg1—Mg1i 103.99 (9) C1—C2—H2B 109.4
O1—Mg1—Mg1ii 35.49 (3) H2A—C2—H2B 108.0
O2—Mg1—Mg1ii 142.70 (17) C2—O2—C3 113.0 (6)
Br2i—Mg1—Mg1ii 106.54 (9) C2—O2—Mg1 126.1 (5)
Br1—Mg1—Mg1ii 103.98 (7) C3—O2—Mg1 118.4 (4)
Br2—Mg1—Mg1ii 51.63 (7) O2—C3—C4 112.9 (7)
Mg1i—Mg1—Mg1ii 60.57 (7) O2—C3—H3A 109.0
O1—Mg1—Mg1iii 34.80 (6) C4—C3—H3A 109.0
O2—Mg1—Mg1iii 142.56 (16) O2—C3—H3B 109.0
Br2i—Mg1—Mg1iii 104.34 (9) C4—C3—H3B 109.0
Br1—Mg1—Mg1iii 51.98 (4) H3A—C3—H3B 107.8
Br2—Mg1—Mg1iii 104.66 (9) C3—C4—H4A 109.5
Mg1i—Mg1—Mg1iii 59.72 (4) C3—C4—H4B 109.5
Mg1ii—Mg1—Mg1iii 59.72 (4) H4A—C4—H4B 109.5
Mg1iii—Br1—Mg1 76.05 (9) C3—C4—H4C 109.5
Mg1ii—Br2—Mg1 75.45 (9) H4A—C4—H4C 109.5
Mg1iii—O1—Mg1 110.39 (12) H4B—C4—H4C 109.5
Mg1iii—O1—Mg1i 109.01 (6)
O1—Mg1—Br1—Mg1iii 0.0 Br2i—Mg1—O1—Mg1ii −121.97 (10)
O2—Mg1—Br1—Mg1iii 176.68 (18) Br1—Mg1—O1—Mg1ii 119.72 (9)
Br2i—Mg1—Br1—Mg1iii −86.46 (9) Br2—Mg1—O1—Mg1ii −1.38 (7)
Br2—Mg1—Br1—Mg1iii 84.71 (9) Mg1i—Mg1—O1—Mg1ii −120.57 (8)
Mg1i—Mg1—Br1—Mg1iii −31.31 (7) Mg1iii—Mg1—O1—Mg1ii 119.72 (9)
Mg1ii—Mg1—Br1—Mg1iii 31.31 (7) C1—C2—O2—C3 −86.8 (8)
O1—Mg1—Br2—Mg1ii 1.02 (5) C1—C2—O2—Mg1 74.9 (8)
O2—Mg1—Br2—Mg1ii −175.11 (18) Br2i—Mg1—O2—C2 17.5 (6)
Br2i—Mg1—Br2—Mg1ii 87.47 (9) Br1—Mg1—O2—C2 135.9 (6)
Br1—Mg1—Br2—Mg1ii −83.50 (9) Br2—Mg1—O2—C2 −103.3 (6)
Mg1i—Mg1—Br2—Mg1ii 32.52 (7) Mg1i—Mg1—O2—C2 16.9 (8)
Mg1iii—Mg1—Br2—Mg1ii −29.32 (7) Mg1ii—Mg1—O2—C2 −109.6 (6)
Br2i—Mg1—O1—Mg1iii 118.31 (8) Mg1iii—Mg1—O2—C2 140.2 (5)
Br1—Mg1—O1—Mg1iii 0.0 Br2i—Mg1—O2—C3 178.3 (5)
Br2—Mg1—O1—Mg1iii −121.10 (8) Br1—Mg1—O2—C3 −63.3 (5)
Mg1i—Mg1—O1—Mg1iii 119.72 (9) Br2—Mg1—O2—C3 57.5 (5)
Mg1ii—Mg1—O1—Mg1iii −119.72 (9) Mg1i—Mg1—O2—C3 177.7 (4)
Br2i—Mg1—O1—Mg1i −1.40 (7) Mg1ii—Mg1—O2—C3 51.2 (6)
Br1—Mg1—O1—Mg1i −119.72 (4) Mg1iii—Mg1—O2—C3 −59.0 (6)
Br2—Mg1—O1—Mg1i 119.19 (10) C2—O2—C3—C4 −82.1 (8)
Mg1ii—Mg1—O1—Mg1i 120.57 (8) Mg1—O2—C3—C4 114.7 (6)
Mg1iii—Mg1—O1—Mg1i −119.72 (9)

Symmetry codes: (i) y+1/2, −x+1/2, −z+1/2; (ii) −y+1/2, x−1/2, −z+1/2; (iii) −x+1, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2385).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.
  5. Lerner, H.-W., Scholz, S., Bolte, M., Wiberg, N., Nöth, H. & Krossing, I. (2003). Eur. J. Inorg. Chem. pp. 666–670.
  6. Metzler, N., Nöth, H., Schmidt, M. & Treitl, A. (1994). Z. Naturforsch. Teil B, 49, 1448–1451.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  10. Stucky, G. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4821–4825.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811043820/bh2385sup1.cif

e-67-m1614-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043820/bh2385Isup2.hkl

e-67-m1614-Isup2.hkl (73.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES