Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):m1624. doi: 10.1107/S160053681104390X

Dichlorido{2-[(3,4-dimethyl­phen­yl)imino­meth­yl]pyridine-κ2 N,N′}copper(II)

Mehdi Khalaj a,*, Saeed Dehghanpour b, Sadegh Salehzadeh c, Ali Mahmoudi d
PMCID: PMC3247544  PMID: 22219849

Abstract

In the title complex, [CuCl2(C14H14N2)], the CuII atom exhibits a very distorted tetra­hedral coordination geometry involving two chloride ions and two N-atom donors from the Schiff base ligand. The range for the six bond angles about the Cu2+ cation is 81.49 (11)–145.95 (9)°. The chelate ring including the CuII atom is approximately planar, with a maximum deviation of 0.039 (4) Å for one of the C atoms; this plane forms a dihedral angle of 46.69 (9)° with the CuCl2 plane.

Related literature

For related structures, see: Mahmoudi et al. (2009); Wang & Zhong (2009). For background information on diimine complexes, see: Khalaj et al. (2010); Salehzadeh et al. (2011).graphic file with name e-67-m1624-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C14H14N2)]

  • M r = 344.71

  • Triclinic, Inline graphic

  • a = 8.1171 (4) Å

  • b = 9.5784 (4) Å

  • c = 10.0609 (5) Å

  • α = 67.236 (2)°

  • β = 88.513 (2)°

  • γ = 81.336 (2)°

  • V = 712.61 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 150 K

  • 0.18 × 0.16 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.725, T max = 0.830

  • 6451 measured reflections

  • 3189 independent reflections

  • 2256 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.126

  • S = 1.07

  • 3189 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104390X/zs2154sup1.cif

e-67-m1624-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104390X/zs2154Isup2.hkl

e-67-m1624-Isup2.hkl (156.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 1.988 (3)
Cu1—N2 2.025 (3)
Cu1—Cl2 2.2035 (10)
Cu1—Cl1 2.2204 (10)

Acknowledgments

The authors would like to acknowledge the Islamic Azad University, Buinzahra Branch Research Council for partial support of this work

supplementary crystallographic information

Comment

Diimine ligands derived from 2-aminopyridine and aniline derivatives are useful bidentate terminal ligands and some complexes with them as ligand have already been published (Mahmoudi et al., 2009; Salehzadeh et al., 2011). We report herein the crystal structure of the title complex [CuCl2(C14H14N2)] which was prepared by the reaction of CuCl2 with the bidentate ligand N-(3,4-dimethylphenyl)-pyridine-2-ylmethyleneamine.

The molecular structure of the title complex is shown in Fig. 1. The CuII ion is in a very distorted tetrahedral environment formed by a bis-chelating ligand and two Cl anions. The dihedral angle between the chelate plane Cu1–N1–C5–C6–N2 and the Cl1–Cu1–Cl2 plane is 46.69(9° and the range for the six bond angles about Cu1 is 81.49 (11)° (N1-Cu1-N2)–145.95 (9)° (N2-Cu1-Cl1). These values show an appreciable distortion towards square planar geometry. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene rings indicate that the ligand is distorted from planarity, with a twist of 26.00 (17)° between the chelate (N1—C5—C6—N2) and the benzene (C7–C12) planes. The Cu—Cl and Cu—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of copper(II) chloride (Mahmoudi et al., 2009; Wang & Zhong, 2009).

Experimental

The title complex was prepared by the reaction of CuCl2 (13.4 mg, 0.1 mmol) and N-(3,4-dimethylphenyl)-(pyridine-2-ylmethylene)amine (21.0 mg, 0.1 mmol) in 10 ml acetonitrile at room temperature. The green single crystals were obtained after the solution had been allowed to stand at room temperature for two days.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.95–0.98Å and included in the refinement with Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

[CuCl2(C14H14N2)] Z = 2
Mr = 344.71 F(000) = 350
Triclinic, P1 Dx = 1.607 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1171 (4) Å Cell parameters from 6451 reflections
b = 9.5784 (4) Å θ = 3.2–27.4°
c = 10.0609 (5) Å µ = 1.89 mm1
α = 67.236 (2)° T = 150 K
β = 88.513 (2)° Block, green
γ = 81.336 (2)° 0.18 × 0.16 × 0.10 mm
V = 712.61 (6) Å3

Data collection

Nonius KappaCCD diffractometer 3189 independent reflections
Radiation source: fine-focus sealed tube 2256 reflections with I > 2σ(I)
graphite Rint = 0.039
Detector resolution: 9 pixels mm-1 θmax = 27.4°, θmin = 3.2°
φ scans and ω scans with κ offsets h = −10→10
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −11→12
Tmin = 0.725, Tmax = 0.830 l = −12→13
6451 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.324P] where P = (Fo2 + 2Fc2)/3
3189 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.83 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.78165 (5) 0.20424 (5) 0.33299 (5) 0.02388 (17)
Cl1 1.03716 (11) 0.14201 (11) 0.26876 (12) 0.0344 (3)
Cl2 0.82609 (12) 0.35601 (10) 0.44190 (11) 0.0285 (2)
N1 0.7024 (4) 0.0099 (3) 0.3557 (3) 0.0214 (7)
N2 0.5411 (4) 0.2901 (3) 0.2659 (3) 0.0210 (7)
C1 0.7928 (5) −0.1295 (4) 0.3991 (4) 0.0246 (8)
H1A 0.9088 −0.1414 0.4200 0.030*
C2 0.7211 (5) −0.2577 (4) 0.4146 (4) 0.0268 (9)
H2A 0.7879 −0.3557 0.4440 0.032*
C3 0.5523 (5) −0.2417 (4) 0.3868 (4) 0.0276 (9)
H3A 0.5013 −0.3282 0.3973 0.033*
C4 0.4583 (5) −0.0967 (4) 0.3432 (4) 0.0242 (8)
H4A 0.3416 −0.0824 0.3242 0.029*
C5 0.5375 (4) 0.0264 (4) 0.3280 (4) 0.0199 (7)
C6 0.4535 (5) 0.1850 (4) 0.2758 (4) 0.0226 (8)
H6A 0.3379 0.2099 0.2500 0.027*
C7 0.4663 (5) 0.4479 (4) 0.2081 (4) 0.0221 (8)
C8 0.5689 (5) 0.5567 (4) 0.1391 (4) 0.0239 (8)
H8A 0.6856 0.5271 0.1362 0.029*
C9 0.4977 (5) 0.7090 (4) 0.0747 (4) 0.0267 (8)
H9A 0.5672 0.7830 0.0249 0.032*
C10 0.3303 (5) 0.7572 (4) 0.0800 (4) 0.0281 (9)
C11 0.2260 (5) 0.6473 (4) 0.1520 (4) 0.0250 (8)
C12 0.2963 (5) 0.4939 (4) 0.2149 (4) 0.0265 (8)
H12A 0.2271 0.4191 0.2634 0.032*
C13 0.2548 (5) 0.9237 (4) 0.0073 (4) 0.0321 (9)
H13A 0.3406 0.9834 −0.0456 0.048*
H13B 0.2103 0.9620 0.0803 0.048*
H13C 0.1645 0.9337 −0.0601 0.048*
C14 0.0420 (5) 0.6938 (4) 0.1616 (5) 0.0363 (10)
H14A −0.0082 0.6034 0.2197 0.054*
H14B −0.0102 0.7396 0.0644 0.054*
H14C 0.0245 0.7687 0.2068 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0176 (3) 0.0229 (3) 0.0336 (3) −0.00222 (18) 0.0004 (2) −0.0139 (2)
Cl1 0.0182 (5) 0.0407 (6) 0.0514 (7) −0.0050 (4) 0.0058 (4) −0.0255 (5)
Cl2 0.0269 (5) 0.0226 (4) 0.0390 (6) −0.0013 (4) −0.0050 (4) −0.0156 (4)
N1 0.0205 (16) 0.0209 (15) 0.0232 (17) −0.0002 (12) −0.0008 (13) −0.0100 (13)
N2 0.0222 (16) 0.0190 (15) 0.0228 (16) −0.0036 (12) 0.0033 (13) −0.0092 (13)
C1 0.023 (2) 0.0270 (19) 0.023 (2) 0.0004 (15) 0.0001 (16) −0.0107 (17)
C2 0.033 (2) 0.0204 (18) 0.028 (2) −0.0005 (16) 0.0044 (18) −0.0118 (17)
C3 0.038 (2) 0.0225 (19) 0.027 (2) −0.0094 (17) 0.0055 (18) −0.0130 (17)
C4 0.024 (2) 0.030 (2) 0.023 (2) −0.0081 (16) 0.0011 (16) −0.0129 (17)
C5 0.0194 (18) 0.0211 (17) 0.0207 (19) −0.0042 (14) 0.0025 (15) −0.0095 (15)
C6 0.0180 (18) 0.0235 (18) 0.027 (2) −0.0008 (14) 0.0016 (16) −0.0114 (17)
C7 0.026 (2) 0.0196 (17) 0.0217 (19) −0.0018 (15) 0.0007 (16) −0.0092 (15)
C8 0.0213 (19) 0.0262 (19) 0.026 (2) −0.0054 (15) 0.0013 (16) −0.0110 (17)
C9 0.031 (2) 0.0251 (19) 0.023 (2) −0.0063 (16) −0.0010 (17) −0.0079 (17)
C10 0.040 (2) 0.0171 (17) 0.023 (2) 0.0025 (16) 0.0032 (18) −0.0054 (16)
C11 0.024 (2) 0.027 (2) 0.024 (2) −0.0012 (16) 0.0016 (16) −0.0096 (17)
C12 0.025 (2) 0.0255 (19) 0.027 (2) −0.0038 (16) 0.0050 (17) −0.0090 (17)
C13 0.043 (3) 0.0233 (19) 0.029 (2) −0.0015 (17) −0.0030 (19) −0.0103 (18)
C14 0.030 (2) 0.029 (2) 0.039 (3) 0.0047 (17) 0.0020 (19) −0.0039 (19)

Geometric parameters (Å, °)

Cu1—N1 1.988 (3) C7—C8 1.391 (5)
Cu1—N2 2.025 (3) C7—C12 1.392 (5)
Cu1—Cl2 2.2035 (10) C8—C9 1.384 (5)
Cu1—Cl1 2.2204 (10) C8—H8A 0.9500
N1—C1 1.335 (4) C9—C10 1.374 (5)
N1—C5 1.348 (5) C9—H9A 0.9500
N2—C6 1.290 (4) C10—C11 1.413 (5)
N2—C7 1.433 (4) C10—C13 1.510 (5)
C1—C2 1.391 (5) C11—C12 1.390 (5)
C1—H1A 0.9500 C11—C14 1.505 (5)
C2—C3 1.379 (5) C12—H12A 0.9500
C2—H2A 0.9500 C13—H13A 0.9800
C3—C4 1.390 (5) C13—H13B 0.9800
C3—H3A 0.9500 C13—H13C 0.9800
C4—C5 1.383 (5) C14—H14A 0.9800
C4—H4A 0.9500 C14—H14B 0.9800
C5—C6 1.462 (5) C14—H14C 0.9800
C6—H6A 0.9500
N1—Cu1—N2 81.49 (11) C8—C7—C12 119.9 (3)
N1—Cu1—Cl2 145.38 (9) C8—C7—N2 117.6 (3)
N2—Cu1—Cl2 99.33 (8) C12—C7—N2 122.5 (3)
N1—Cu1—Cl1 95.98 (9) C9—C8—C7 118.7 (3)
N2—Cu1—Cl1 145.95 (9) C9—C8—H8A 120.7
Cl2—Cu1—Cl1 101.41 (4) C7—C8—H8A 120.7
C1—N1—C5 119.2 (3) C10—C9—C8 122.5 (3)
C1—N1—Cu1 127.1 (3) C10—C9—H9A 118.8
C5—N1—Cu1 113.6 (2) C8—C9—H9A 118.8
C6—N2—C7 120.0 (3) C9—C10—C11 119.0 (3)
C6—N2—Cu1 112.6 (2) C9—C10—C13 121.6 (3)
C7—N2—Cu1 127.4 (2) C11—C10—C13 119.4 (3)
N1—C1—C2 121.5 (3) C12—C11—C10 118.8 (3)
N1—C1—H1A 119.2 C12—C11—C14 120.0 (3)
C2—C1—H1A 119.2 C10—C11—C14 121.2 (3)
C3—C2—C1 119.6 (3) C11—C12—C7 121.1 (3)
C3—C2—H2A 120.2 C11—C12—H12A 119.4
C1—C2—H2A 120.2 C7—C12—H12A 119.4
C2—C3—C4 118.8 (3) C10—C13—H13A 109.5
C2—C3—H3A 120.6 C10—C13—H13B 109.5
C4—C3—H3A 120.6 H13A—C13—H13B 109.5
C5—C4—C3 118.8 (3) C10—C13—H13C 109.5
C5—C4—H4A 120.6 H13A—C13—H13C 109.5
C3—C4—H4A 120.6 H13B—C13—H13C 109.5
N1—C5—C4 122.1 (3) C11—C14—H14A 109.5
N1—C5—C6 114.1 (3) C11—C14—H14B 109.5
C4—C5—C6 123.7 (3) H14A—C14—H14B 109.5
N2—C6—C5 118.0 (3) C11—C14—H14C 109.5
N2—C6—H6A 121.0 H14A—C14—H14C 109.5
C5—C6—H6A 121.0 H14B—C14—H14C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2154).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Khalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647. [DOI] [PMC free article] [PubMed]
  4. Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555. [DOI] [PMC free article] [PubMed]
  5. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
  7. Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104390X/zs2154sup1.cif

e-67-m1624-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104390X/zs2154Isup2.hkl

e-67-m1624-Isup2.hkl (156.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES