Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):m1629–m1630. doi: 10.1107/S1600536811044229

(μ-Piperazine-1,4-dicarbodithio­ato-κ4 S 1,S 1′:S 4,S 4′)bis­[bis­(triphenyl­phos­phane-κP)gold(I)] chloro­form disolvate

Ilia A Guzei a,*, Lara C Spencer a, Stacy Lillywhite b, James Darkwa b
PMCID: PMC3247547  PMID: 22219852

Abstract

In the title compound, [Au2(C6H8N2S4)(C18H15P)4]·2CHCl3, the digold complex resides on a crystallographic inversion center and co-crystallizes with two mol­ecules of chloro­form solvent. The piperazine-1,4-dicarbodithio­ate linker has an almost ideal chair conformation. The geometry about the gold atoms is severely distorted tetra­hedral punctuated by a very acute S—Au—S bite angle.

Related literature

For stabilization of gold salts by dithio­carbonates, see: Fernandez et al. (1998). For use of piperazine dithio­carbamates as ligands used to engineer multimetallic assemblies, see: Wilton-Ely et al. (2008); Knight et al. (2009a ,b ); Oliver et al. (2011). For the copper analgoue, see: Kumar et al. (2009). For other related gold complexes, see: Razak et al. (2000); Jian et al. (2000). A mol­ecular geometry check was performed with Mogul, see: Bruno et al. (2002). Related compounds were found in the Cambridge Structural Database (Allen, 2002). For ring analysis, see: Cremer & Pople (1975).graphic file with name e-67-m1629-scheme1.jpg

Experimental

Crystal data

  • [Au2(C6H8N2S4)(C18H15P)4]·2CHCl3

  • M r = 1918.13

  • Triclinic, Inline graphic

  • a = 12.8455 (17) Å

  • b = 13.2879 (10) Å

  • c = 13.4197 (9) Å

  • α = 119.572 (2)°

  • β = 101.544 (2)°

  • γ = 96.039 (2)°

  • V = 1895.2 (3) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 11.30 mm−1

  • T = 100 K

  • 0.44 × 0.35 × 0.29 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.083, T max = 0.140

  • 30338 measured reflections

  • 7089 independent reflections

  • 7080 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.074

  • S = 1.15

  • 7089 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 2.40 e Å−3

  • Δρmin = −1.35 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044229/ng5253sup1.cif

e-67-m1629-sup1.cif (40.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044229/ng5253Isup2.hkl

e-67-m1629-Isup2.hkl (346.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Au1—P2 2.2994 (8)
Au1—P1 2.3233 (8)
Au1—S2 2.6133 (8)
Au1—S1 2.7414 (8)
P2—Au1—P1 134.65 (3)
P2—Au1—S2 116.81 (3)
P1—Au1—S2 107.10 (3)
P2—Au1—S1 107.34 (3)
P1—Au1—S1 99.39 (3)
S2—Au1—S1 67.03 (2)

Acknowledgments

We acknowledge support from the University of Johannesburg for this work.

supplementary crystallographic information

Comment

Dithiocarbamates have long been used as ligands to stabilize gold(I) and gold(III) salts (Fernandez et al., 1998), but piperazine dithiocarbamates are currently receiving a lot more attention as ligands that can be used to engineer multimetallic assemblies including making gold nanoparticles (Wilton-Ely et al., 2008; Knight et al. 2009a; Knight et al., 2009b; Oliver et al., 2011). We recently isolated the title compound (I) via a slight modification of one of the routes described in the aforementioned literature.

The crystal structure of (I) contains the digold complex residing on a crystallographic inversion center and two molecules of solvent chloroform solvent per digold complex. The piperzine dithiocarbamate linker exhibits an almost ideal chair conformation (puckering coordinates θ=177.97 (1)° φ=0°, Cremer & Pople, 1975) similar to the analogous compounds with group ten square-planar metal centers nickel, palladium, and platinum (Knight et al., 2009a) and the tetrahedral copper analogue (Kumar et al., 2009). All bond distances and angles are typical as confirmed by a Mogul geometry check except for the S1—C1—S2, S1—C1—N1, and S2—C1—N1 angles (Bruno et al., 2002). However these angles in (I) are similar to those in the closely related compounds (N,N-diisopropyldithiocarbamato-S,S')-bis(triphenylphosphane-P)-gold(I) (Jian et al., 2000) and (piperidine-1-carbodithioato-S,S')-bis(triphenylphosphane-P)-gold(I) (Razak et al., 2000).

The geometry about the gold atom is severely distorted tetrahedral with the dihedral angle between the planes defined by atoms S1, Au1, S1 and P1, Au1, P1 measuring 88.77 (3)°. Such a distorted tetrahedral geometry and acute S—Au—S bite angle (67.03 (2)°) are typical of complexes where gold is bonded to two phosphorous atoms and two sulfur atoms of a bidentale ligand forming a four-membered metallocycle. For eight such compounds in the Cambridge Structural Database (CSD; August 2011 update; Allen, 2002) the S—Au—S bite angle has an average of 66 (3)°. These compounds also have very large P—Au—P angles with a 135 (5)° average corresponding well to the 134.65 (3)° value found in (I). The copper analogue of (I) also exhibits a similarly distorted tetrahedral geometry but with a larger S—Cu—S bite angle of 75.41 (2)° (Kumar et al., 2009). The group ten analogues exhibit distorted square planar geometries with larger S—metal—S bite angles that average 77 (3)° (Knight et al., 2009a). The Au—S distances in (I) differ by 0.1281 Å; this value agrees well with the differences in the two Au—S bonds in the eight related compounds in the CSD where such distances differ by an average of 0.18 (11) Å.

Experimental

To a solution of potassium piperazine-1,4-bis(dithiocarbamate) (0.17 g, 0.57 mmol) in water (10 mL) was added a solution of [AuCl(PPh3)] (0.40 g, 0.81 mmol) in dichloromethane (10 mL). The biphasic reaction mixture was stirred for 30 minutes. The organic layer was separated and layered with chloroform and hexane to yield a yellow solid. Yield: 0.32 g (69%). 1H NMR (CDCl3): δ 7.53 (m, 12H), 7.42 (m, 18H), 4.30 (s, 8H). 13C{1H} NMR (CDCl3): δ 208.2 (2 C, C=S), 134.1, 130.7, 128.9, 50.1. 31 P{1H} NMR (CDCl3): δ 28.9. ESI-MS (m/z): 1155 ([M], 5%), 721 [Au(PPh3)2]+, 100%). IR (ATR, cm-1): υ(C—N) = 1451, υ(C=S) = 1026, υ(C—S) = 997. Anal. Calc. for C78H68Au2N2P2S4.CHCl3: C 50.09, H 3.68, N 1.46. Found: C 49.73, H 3.76, N 1.60%.

Refinement

All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(bearing atom). Default effective X—H distances for T = -173.0°C C(sp 3)–1H=1.00, C(sp 3)–2H=0.99, C(sp 2)–H=0.95. The final difference map had a peak and a hole in the vicinities of Au.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted. Symmetry code: (i) -x,2-y, 2-z.

Crystal data

[Au2(C6H8N2S4)(C18H15P)4]·2CHCl3 Z = 1
Mr = 1918.13 F(000) = 948
Triclinic, P1 Dx = 1.681 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 12.8455 (17) Å Cell parameters from 9936 reflections
b = 13.2879 (10) Å θ = 3.6–71.7°
c = 13.4197 (9) Å µ = 11.30 mm1
α = 119.572 (2)° T = 100 K
β = 101.544 (2)° Block, colourless
γ = 96.039 (2)° 0.44 × 0.35 × 0.29 mm
V = 1895.2 (3) Å3

Data collection

Bruker SMART APEXII diffractometer 7089 independent reflections
Radiation source: fine-focus sealed tube 7080 reflections with I > 2σ(I)
graphite Rint = 0.031
0.50° ω and 0.5 ° φ scans θmax = 72.3°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −15→14
Tmin = 0.083, Tmax = 0.140 k = −16→16
30338 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0416P)2 + 3.5159P] where P = (Fo2 + 2Fc2)/3
7089 reflections (Δ/σ)max = 0.001
442 parameters Δρmax = 2.40 e Å3
0 restraints Δρmin = −1.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0.234436 (10) 0.776500 (10) 0.653197 (10) 0.01426 (6)
S1 0.25387 (6) 0.94442 (7) 0.88645 (7) 0.01770 (16)
S2 0.04873 (6) 0.82819 (7) 0.68645 (7) 0.01689 (16)
P1 0.24564 (7) 0.61270 (7) 0.67150 (7) 0.01428 (16)
P2 0.32654 (7) 0.86933 (7) 0.57904 (7) 0.01350 (16)
N1 0.0585 (2) 0.9761 (2) 0.9150 (2) 0.0168 (5)
C1 0.1155 (3) 0.9217 (3) 0.8365 (3) 0.0156 (6)
C2 0.1115 (3) 1.0645 (3) 1.0418 (3) 0.0195 (7)
H2AB 0.1051 1.1446 1.0584 0.023*
H2AA 0.1903 1.0655 1.0614 0.023*
C3 0.0590 (3) 1.0359 (3) 1.1199 (3) 0.0192 (7)
H3AA 0.0737 0.9608 1.1113 0.023*
H3AB 0.0913 1.1005 1.2050 0.023*
C4 0.3628 (3) 0.6456 (3) 0.7941 (3) 0.0183 (7)
C5 0.4568 (3) 0.7301 (3) 0.8254 (3) 0.0215 (7)
H5AA 0.4581 0.7723 0.7854 0.026*
C6 0.5488 (3) 0.7527 (4) 0.9152 (3) 0.0285 (8)
H6AA 0.6130 0.8098 0.9357 0.034*
C7 0.5471 (3) 0.6927 (4) 0.9744 (3) 0.0311 (9)
H7AA 0.6101 0.7085 1.0357 0.037*
C8 0.4537 (3) 0.6093 (4) 0.9447 (3) 0.0301 (8)
H8AA 0.4526 0.5687 0.9863 0.036*
C9 0.3620 (3) 0.5849 (3) 0.8550 (3) 0.0238 (7)
H9AA 0.2985 0.5270 0.8346 0.029*
C10 0.2675 (3) 0.4871 (3) 0.5424 (3) 0.0159 (6)
C11 0.3632 (3) 0.4487 (3) 0.5474 (3) 0.0203 (7)
H11A 0.4171 0.4825 0.6223 0.024*
C12 0.3813 (3) 0.3601 (3) 0.4429 (3) 0.0245 (7)
H12A 0.4475 0.3346 0.4470 0.029*
C13 0.3025 (3) 0.3101 (3) 0.3339 (3) 0.0229 (7)
H13A 0.3145 0.2498 0.2631 0.027*
C14 0.2067 (3) 0.3477 (3) 0.3280 (3) 0.0215 (7)
H14A 0.1527 0.3128 0.2530 0.026*
C15 0.1887 (3) 0.4362 (3) 0.4311 (3) 0.0190 (7)
H15A 0.1228 0.4624 0.4262 0.023*
C16 0.1298 (3) 0.5531 (3) 0.7022 (3) 0.0168 (6)
C17 0.0658 (3) 0.4376 (3) 0.6282 (3) 0.0187 (7)
H17A 0.0823 0.3836 0.5574 0.022*
C18 −0.0229 (3) 0.4005 (3) 0.6578 (3) 0.0236 (7)
H18A −0.0670 0.3215 0.6065 0.028*
C19 −0.0467 (3) 0.4788 (3) 0.7617 (3) 0.0243 (7)
H19A −0.1067 0.4534 0.7820 0.029*
C20 0.0174 (3) 0.5941 (3) 0.8355 (3) 0.0248 (7)
H20A 0.0017 0.6474 0.9072 0.030*
C21 0.1042 (3) 0.6322 (3) 0.8060 (3) 0.0204 (7)
H21A 0.1464 0.7121 0.8561 0.025*
C22 0.2798 (3) 0.9894 (3) 0.5672 (3) 0.0169 (6)
C23 0.1719 (3) 0.9678 (3) 0.5049 (3) 0.0218 (7)
H23A 0.1233 0.8929 0.4726 0.026*
C24 0.1338 (3) 1.0550 (3) 0.4894 (3) 0.0269 (8)
H24A 0.0604 1.0382 0.4438 0.032*
C25 0.2025 (3) 1.1658 (3) 0.5399 (3) 0.0262 (8)
H25A 0.1764 1.2252 0.5293 0.031*
C26 0.3099 (3) 1.1904 (3) 0.6063 (3) 0.0242 (7)
H26A 0.3567 1.2672 0.6431 0.029*
C27 0.3491 (3) 1.1018 (3) 0.6189 (3) 0.0207 (7)
H27A 0.4230 1.1181 0.6628 0.025*
C28 0.4678 (3) 0.9384 (3) 0.6736 (3) 0.0157 (6)
C29 0.4856 (3) 1.0177 (3) 0.7967 (3) 0.0187 (7)
H29A 0.4249 1.0341 0.8276 0.022*
C30 0.5910 (3) 1.0720 (3) 0.8732 (3) 0.0214 (7)
H30A 0.6027 1.1262 0.9563 0.026*
C31 0.6797 (3) 1.0473 (3) 0.8284 (3) 0.0208 (7)
H31A 0.7520 1.0844 0.8812 0.025*
C32 0.6637 (3) 0.9691 (3) 0.7077 (3) 0.0206 (7)
H32A 0.7247 0.9524 0.6776 0.025*
C33 0.5574 (3) 0.9145 (3) 0.6298 (3) 0.0177 (6)
H33A 0.5464 0.8610 0.5467 0.021*
C34 0.3386 (3) 0.7666 (3) 0.4312 (3) 0.0154 (6)
C35 0.3435 (3) 0.7995 (3) 0.3476 (3) 0.0205 (7)
H35A 0.3372 0.8769 0.3657 0.025*
C36 0.3575 (3) 0.7189 (3) 0.2381 (3) 0.0247 (7)
H36A 0.3597 0.7410 0.1810 0.030*
C37 0.3683 (3) 0.6067 (3) 0.2119 (3) 0.0220 (7)
H37A 0.3790 0.5524 0.1374 0.026*
C38 0.3635 (3) 0.5729 (3) 0.2941 (3) 0.0220 (7)
H38A 0.3715 0.4960 0.2763 0.026*
C39 0.3470 (3) 0.6526 (3) 0.4026 (3) 0.0184 (7)
H39A 0.3413 0.6288 0.4578 0.022*
Cl1 0.15739 (10) 0.41053 (9) 0.95175 (11) 0.0451 (3)
Cl2 0.14677 (11) 0.15846 (10) 0.81701 (11) 0.0455 (3)
Cl3 −0.05265 (9) 0.24127 (10) 0.82114 (9) 0.0383 (2)
C40 0.0848 (3) 0.2721 (4) 0.8232 (4) 0.0305 (8)
H40A 0.0863 0.2762 0.7511 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.01735 (9) 0.01435 (8) 0.01405 (8) 0.00500 (5) 0.00798 (6) 0.00817 (6)
S1 0.0143 (4) 0.0222 (4) 0.0133 (3) 0.0047 (3) 0.0051 (3) 0.0065 (3)
S2 0.0149 (4) 0.0209 (4) 0.0123 (3) 0.0050 (3) 0.0044 (3) 0.0066 (3)
P1 0.0157 (4) 0.0147 (4) 0.0139 (4) 0.0043 (3) 0.0058 (3) 0.0080 (3)
P2 0.0156 (4) 0.0141 (4) 0.0136 (4) 0.0045 (3) 0.0063 (3) 0.0084 (3)
N1 0.0135 (14) 0.0212 (14) 0.0138 (13) 0.0050 (11) 0.0049 (10) 0.0073 (11)
C1 0.0168 (16) 0.0153 (15) 0.0155 (15) 0.0025 (12) 0.0057 (12) 0.0085 (13)
C2 0.0175 (17) 0.0210 (16) 0.0151 (16) 0.0036 (13) 0.0056 (13) 0.0058 (14)
C3 0.0156 (17) 0.0260 (17) 0.0147 (15) 0.0079 (13) 0.0062 (12) 0.0086 (14)
C4 0.0197 (17) 0.0199 (16) 0.0145 (15) 0.0068 (13) 0.0062 (13) 0.0077 (13)
C5 0.0224 (18) 0.0199 (16) 0.0170 (16) 0.0042 (13) 0.0077 (13) 0.0054 (14)
C6 0.0201 (19) 0.0315 (19) 0.0225 (18) 0.0079 (15) 0.0067 (14) 0.0057 (16)
C7 0.028 (2) 0.041 (2) 0.0168 (17) 0.0185 (17) 0.0045 (15) 0.0091 (16)
C8 0.035 (2) 0.043 (2) 0.0243 (19) 0.0203 (18) 0.0115 (16) 0.0225 (18)
C9 0.027 (2) 0.0289 (18) 0.0237 (18) 0.0109 (15) 0.0102 (15) 0.0175 (16)
C10 0.0218 (18) 0.0128 (14) 0.0159 (15) 0.0054 (12) 0.0090 (13) 0.0080 (12)
C11 0.0209 (18) 0.0190 (16) 0.0211 (17) 0.0069 (13) 0.0052 (14) 0.0105 (14)
C12 0.0243 (19) 0.0223 (17) 0.0285 (19) 0.0087 (14) 0.0117 (15) 0.0124 (15)
C13 0.030 (2) 0.0157 (15) 0.0219 (17) 0.0062 (14) 0.0130 (15) 0.0071 (14)
C14 0.0243 (19) 0.0198 (16) 0.0166 (16) 0.0027 (14) 0.0037 (13) 0.0084 (14)
C15 0.0199 (18) 0.0184 (16) 0.0200 (16) 0.0053 (13) 0.0060 (13) 0.0108 (14)
C16 0.0155 (17) 0.0200 (16) 0.0204 (16) 0.0062 (13) 0.0053 (12) 0.0143 (14)
C17 0.0193 (18) 0.0195 (16) 0.0206 (16) 0.0062 (13) 0.0061 (13) 0.0125 (14)
C18 0.0196 (18) 0.0260 (18) 0.0286 (19) 0.0013 (14) 0.0043 (14) 0.0185 (16)
C19 0.0173 (18) 0.037 (2) 0.0321 (19) 0.0067 (15) 0.0089 (14) 0.0270 (17)
C20 0.026 (2) 0.0334 (19) 0.0237 (18) 0.0115 (15) 0.0123 (15) 0.0189 (16)
C21 0.0233 (18) 0.0206 (16) 0.0202 (16) 0.0052 (13) 0.0079 (13) 0.0122 (14)
C22 0.0216 (18) 0.0187 (15) 0.0169 (15) 0.0095 (13) 0.0105 (13) 0.0113 (13)
C23 0.0222 (18) 0.0218 (17) 0.0239 (17) 0.0069 (14) 0.0073 (14) 0.0132 (15)
C24 0.027 (2) 0.032 (2) 0.0281 (19) 0.0129 (16) 0.0090 (15) 0.0191 (17)
C25 0.032 (2) 0.0299 (19) 0.0308 (19) 0.0190 (16) 0.0162 (16) 0.0216 (17)
C26 0.030 (2) 0.0188 (16) 0.0276 (18) 0.0067 (14) 0.0125 (15) 0.0134 (15)
C27 0.0203 (18) 0.0218 (17) 0.0244 (17) 0.0077 (14) 0.0080 (14) 0.0142 (15)
C28 0.0176 (17) 0.0152 (14) 0.0173 (15) 0.0045 (12) 0.0047 (12) 0.0108 (13)
C29 0.0180 (17) 0.0222 (16) 0.0182 (16) 0.0062 (13) 0.0068 (13) 0.0114 (14)
C30 0.0228 (18) 0.0239 (17) 0.0165 (16) 0.0060 (14) 0.0044 (13) 0.0104 (14)
C31 0.0158 (17) 0.0238 (17) 0.0240 (17) 0.0056 (13) 0.0027 (13) 0.0143 (15)
C32 0.0203 (18) 0.0236 (17) 0.0252 (18) 0.0114 (14) 0.0110 (14) 0.0154 (15)
C33 0.0199 (17) 0.0192 (15) 0.0199 (16) 0.0070 (13) 0.0080 (13) 0.0132 (14)
C34 0.0129 (16) 0.0172 (15) 0.0152 (15) 0.0041 (12) 0.0048 (12) 0.0075 (13)
C35 0.0275 (19) 0.0193 (16) 0.0176 (16) 0.0062 (13) 0.0086 (14) 0.0109 (14)
C36 0.031 (2) 0.0309 (19) 0.0186 (17) 0.0078 (15) 0.0111 (14) 0.0162 (15)
C37 0.0231 (18) 0.0237 (17) 0.0152 (16) 0.0053 (14) 0.0097 (13) 0.0059 (14)
C38 0.0239 (19) 0.0192 (16) 0.0224 (17) 0.0064 (13) 0.0102 (14) 0.0093 (14)
C39 0.0196 (17) 0.0208 (16) 0.0169 (15) 0.0051 (13) 0.0068 (13) 0.0109 (14)
Cl1 0.0397 (6) 0.0299 (5) 0.0451 (6) −0.0012 (4) 0.0001 (5) 0.0112 (5)
Cl2 0.0608 (7) 0.0342 (5) 0.0547 (7) 0.0180 (5) 0.0278 (6) 0.0276 (5)
Cl3 0.0355 (5) 0.0420 (5) 0.0346 (5) −0.0020 (4) 0.0028 (4) 0.0230 (4)
C40 0.035 (2) 0.030 (2) 0.0264 (19) 0.0009 (16) 0.0048 (16) 0.0183 (17)

Geometric parameters (Å, °)

Au1—P2 2.2994 (8) C17—H17A 0.9500
Au1—P1 2.3233 (8) C18—C19 1.388 (6)
Au1—S2 2.6133 (8) C18—H18A 0.9500
Au1—S1 2.7414 (8) C19—C20 1.384 (5)
S1—C1 1.706 (3) C19—H19A 0.9500
S2—C1 1.718 (3) C20—C21 1.383 (5)
P1—C10 1.818 (3) C20—H20A 0.9500
P1—C4 1.823 (4) C21—H21A 0.9500
P1—C16 1.825 (3) C22—C23 1.386 (5)
P2—C34 1.822 (3) C22—C27 1.398 (5)
P2—C28 1.823 (3) C23—C24 1.393 (5)
P2—C22 1.829 (3) C23—H23A 0.9500
N1—C1 1.354 (4) C24—C25 1.382 (6)
N1—C3i 1.454 (4) C24—H24A 0.9500
N1—C2 1.460 (4) C25—C26 1.389 (6)
C2—C3 1.524 (5) C25—H25A 0.9500
C2—H2AB 0.9900 C26—C27 1.397 (5)
C2—H2AA 0.9900 C26—H26A 0.9500
C3—N1i 1.454 (4) C27—H27A 0.9500
C3—H3AA 0.9900 C28—C33 1.392 (5)
C3—H3AB 0.9900 C28—C29 1.403 (5)
C4—C5 1.393 (5) C29—C30 1.385 (5)
C4—C9 1.405 (5) C29—H29A 0.9500
C5—C6 1.392 (5) C30—C31 1.387 (5)
C5—H5AA 0.9500 C30—H30A 0.9500
C6—C7 1.378 (6) C31—C32 1.381 (5)
C6—H6AA 0.9500 C31—H31A 0.9500
C7—C8 1.386 (6) C32—C33 1.397 (5)
C7—H7AA 0.9500 C32—H32A 0.9500
C8—C9 1.380 (5) C33—H33A 0.9500
C8—H8AA 0.9500 C34—C39 1.390 (5)
C9—H9AA 0.9500 C34—C35 1.400 (5)
C10—C11 1.381 (5) C35—C36 1.390 (5)
C10—C15 1.403 (5) C35—H35A 0.9500
C11—C12 1.402 (5) C36—C37 1.383 (5)
C11—H11A 0.9500 C36—H36A 0.9500
C12—C13 1.382 (5) C37—C38 1.389 (5)
C12—H12A 0.9500 C37—H37A 0.9500
C13—C14 1.378 (5) C38—C39 1.392 (5)
C13—H13A 0.9500 C38—H38A 0.9500
C14—C15 1.390 (5) C39—H39A 0.9500
C14—H14A 0.9500 Cl1—C40 1.758 (4)
C15—H15A 0.9500 Cl2—C40 1.754 (4)
C16—C17 1.386 (5) Cl3—C40 1.762 (4)
C16—C21 1.402 (5) C40—H40A 1.0000
C17—C18 1.398 (5)
P2—Au1—P1 134.65 (3) C21—C16—P1 116.5 (3)
P2—Au1—S2 116.81 (3) C16—C17—C18 120.1 (3)
P1—Au1—S2 107.10 (3) C16—C17—H17A 120.0
P2—Au1—S1 107.34 (3) C18—C17—H17A 120.0
P1—Au1—S1 99.39 (3) C19—C18—C17 120.2 (3)
S2—Au1—S1 67.03 (2) C19—C18—H18A 119.9
C1—S1—Au1 84.64 (11) C17—C18—H18A 119.9
C1—S2—Au1 88.55 (12) C20—C19—C18 119.6 (3)
C10—P1—C4 103.04 (16) C20—C19—H19A 120.2
C10—P1—C16 106.19 (15) C18—C19—H19A 120.2
C4—P1—C16 103.85 (15) C21—C20—C19 120.6 (3)
C10—P1—Au1 113.94 (10) C21—C20—H20A 119.7
C4—P1—Au1 112.18 (11) C19—C20—H20A 119.7
C16—P1—Au1 116.33 (11) C20—C21—C16 120.1 (3)
C34—P2—C28 104.10 (15) C20—C21—H21A 120.0
C34—P2—C22 104.72 (15) C16—C21—H21A 120.0
C28—P2—C22 103.69 (15) C23—C22—C27 119.1 (3)
C34—P2—Au1 113.39 (11) C23—C22—P2 118.6 (3)
C28—P2—Au1 109.59 (10) C27—C22—P2 122.3 (3)
C22—P2—Au1 119.85 (11) C22—C23—C24 120.6 (3)
C1—N1—C3i 123.8 (3) C22—C23—H23A 119.7
C1—N1—C2 122.7 (3) C24—C23—H23A 119.7
C3i—N1—C2 113.0 (3) C25—C24—C23 120.2 (4)
N1—C1—S1 120.2 (2) C25—C24—H24A 119.9
N1—C1—S2 120.3 (3) C23—C24—H24A 119.9
S1—C1—S2 119.56 (19) C24—C25—C26 119.9 (3)
N1—C2—C3 110.7 (3) C24—C25—H25A 120.1
N1—C2—H2AB 109.5 C26—C25—H25A 120.1
C3—C2—H2AB 109.5 C25—C26—C27 119.9 (3)
N1—C2—H2AA 109.5 C25—C26—H26A 120.0
C3—C2—H2AA 109.5 C27—C26—H26A 120.0
H2AB—C2—H2AA 108.1 C26—C27—C22 120.2 (3)
N1i—C3—C2 110.2 (3) C26—C27—H27A 119.9
N1i—C3—H3AA 109.6 C22—C27—H27A 119.9
C2—C3—H3AA 109.6 C33—C28—C29 119.1 (3)
N1i—C3—H3AB 109.6 C33—C28—P2 123.2 (3)
C2—C3—H3AB 109.6 C29—C28—P2 117.7 (3)
H3AA—C3—H3AB 108.1 C30—C29—C28 120.4 (3)
C5—C4—C9 119.1 (3) C30—C29—H29A 119.8
C5—C4—P1 119.3 (3) C28—C29—H29A 119.8
C9—C4—P1 121.6 (3) C29—C30—C31 119.9 (3)
C6—C5—C4 120.2 (3) C29—C30—H30A 120.0
C6—C5—H5AA 119.9 C31—C30—H30A 120.0
C4—C5—H5AA 119.9 C32—C31—C30 120.5 (3)
C7—C6—C5 120.2 (4) C32—C31—H31A 119.8
C7—C6—H6AA 119.9 C30—C31—H31A 119.8
C5—C6—H6AA 119.9 C31—C32—C33 119.9 (3)
C6—C7—C8 120.0 (4) C31—C32—H32A 120.0
C6—C7—H7AA 120.0 C33—C32—H32A 120.0
C8—C7—H7AA 120.0 C28—C33—C32 120.2 (3)
C9—C8—C7 120.5 (4) C28—C33—H33A 119.9
C9—C8—H8AA 119.8 C32—C33—H33A 119.9
C7—C8—H8AA 119.8 C39—C34—C35 119.2 (3)
C8—C9—C4 119.9 (4) C39—C34—P2 118.2 (2)
C8—C9—H9AA 120.0 C35—C34—P2 122.6 (2)
C4—C9—H9AA 120.0 C36—C35—C34 120.0 (3)
C11—C10—C15 119.0 (3) C36—C35—H35A 120.0
C11—C10—P1 122.6 (3) C34—C35—H35A 120.0
C15—C10—P1 118.0 (3) C37—C36—C35 120.2 (3)
C10—C11—C12 120.6 (3) C37—C36—H36A 119.9
C10—C11—H11A 119.7 C35—C36—H36A 119.9
C12—C11—H11A 119.7 C36—C37—C38 120.3 (3)
C13—C12—C11 119.8 (3) C36—C37—H37A 119.8
C13—C12—H12A 120.1 C38—C37—H37A 119.8
C11—C12—H12A 120.1 C37—C38—C39 119.5 (3)
C14—C13—C12 120.1 (3) C37—C38—H38A 120.2
C14—C13—H13A 120.0 C39—C38—H38A 120.2
C12—C13—H13A 120.0 C34—C39—C38 120.7 (3)
C13—C14—C15 120.4 (3) C34—C39—H39A 119.6
C13—C14—H14A 119.8 C38—C39—H39A 119.6
C15—C14—H14A 119.8 Cl2—C40—Cl1 110.6 (2)
C14—C15—C10 120.1 (3) Cl2—C40—Cl3 110.7 (2)
C14—C15—H15A 120.0 Cl1—C40—Cl3 110.3 (2)
C10—C15—H15A 120.0 Cl2—C40—H40A 108.4
C17—C16—C21 119.4 (3) Cl1—C40—H40A 108.4
C17—C16—P1 124.1 (3) Cl3—C40—H40A 108.4
P2—Au1—S1—C1 115.18 (11) C13—C14—C15—C10 −0.8 (5)
P1—Au1—S1—C1 −101.89 (11) C11—C10—C15—C14 0.7 (5)
S2—Au1—S1—C1 2.79 (11) P1—C10—C15—C14 173.9 (3)
P2—Au1—S2—C1 −101.30 (11) C10—P1—C16—C17 −7.7 (3)
P1—Au1—S2—C1 90.39 (11) C4—P1—C16—C17 −116.0 (3)
S1—Au1—S2—C1 −2.76 (11) Au1—P1—C16—C17 120.2 (3)
P2—Au1—P1—C10 −40.63 (13) C10—P1—C16—C21 174.0 (3)
S2—Au1—P1—C10 124.64 (13) C4—P1—C16—C21 65.7 (3)
S1—Au1—P1—C10 −166.64 (13) Au1—P1—C16—C21 −58.0 (3)
P2—Au1—P1—C4 75.96 (12) C21—C16—C17—C18 −0.4 (5)
S2—Au1—P1—C4 −118.77 (12) P1—C16—C17—C18 −178.6 (3)
S1—Au1—P1—C4 −50.05 (12) C16—C17—C18—C19 −0.6 (5)
P2—Au1—P1—C16 −164.70 (12) C17—C18—C19—C20 0.4 (5)
S2—Au1—P1—C16 0.57 (13) C18—C19—C20—C21 0.7 (5)
S1—Au1—P1—C16 69.29 (13) C19—C20—C21—C16 −1.7 (5)
P1—Au1—P2—C34 48.64 (13) C17—C16—C21—C20 1.6 (5)
S2—Au1—P2—C34 −115.56 (12) P1—C16—C21—C20 179.9 (3)
S1—Au1—P2—C34 171.92 (12) C34—P2—C22—C23 74.3 (3)
P1—Au1—P2—C28 −67.20 (12) C28—P2—C22—C23 −176.8 (3)
S2—Au1—P2—C28 128.61 (11) Au1—P2—C22—C23 −54.3 (3)
S1—Au1—P2—C28 56.08 (11) C34—P2—C22—C27 −105.8 (3)
P1—Au1—P2—C22 173.21 (13) C28—P2—C22—C27 3.1 (3)
S2—Au1—P2—C22 9.01 (13) Au1—P2—C22—C27 125.6 (3)
S1—Au1—P2—C22 −63.52 (13) C27—C22—C23—C24 2.8 (5)
C3i—N1—C1—S1 178.5 (2) P2—C22—C23—C24 −177.3 (3)
C2—N1—C1—S1 6.3 (4) C22—C23—C24—C25 −2.4 (6)
C3i—N1—C1—S2 −2.2 (4) C23—C24—C25—C26 0.1 (6)
C2—N1—C1—S2 −174.4 (2) C24—C25—C26—C27 1.8 (5)
Au1—S1—C1—N1 174.8 (3) C25—C26—C27—C22 −1.5 (5)
Au1—S1—C1—S2 −4.50 (17) C23—C22—C27—C26 −0.8 (5)
Au1—S2—C1—N1 −174.6 (3) P2—C22—C27—C26 179.3 (3)
Au1—S2—C1—S1 4.70 (18) C34—P2—C28—C33 2.9 (3)
C1—N1—C2—C3 −131.2 (3) C22—P2—C28—C33 −106.4 (3)
C3i—N1—C2—C3 55.8 (4) Au1—P2—C28—C33 124.5 (2)
N1—C2—C3—N1i −54.2 (4) C34—P2—C28—C29 −175.9 (2)
C10—P1—C4—C5 92.7 (3) C22—P2—C28—C29 74.8 (3)
C16—P1—C4—C5 −156.7 (3) Au1—P2—C28—C29 −54.3 (3)
Au1—P1—C4—C5 −30.2 (3) C33—C28—C29—C30 0.5 (5)
C10—P1—C4—C9 −85.0 (3) P2—C28—C29—C30 179.4 (3)
C16—P1—C4—C9 25.6 (3) C28—C29—C30—C31 −0.6 (5)
Au1—P1—C4—C9 152.0 (3) C29—C30—C31—C32 0.3 (5)
C9—C4—C5—C6 0.6 (5) C30—C31—C32—C33 0.1 (5)
P1—C4—C5—C6 −177.2 (3) C29—C28—C33—C32 −0.1 (5)
C4—C5—C6—C7 −0.7 (5) P2—C28—C33—C32 −178.9 (2)
C5—C6—C7—C8 0.1 (6) C31—C32—C33—C28 −0.2 (5)
C6—C7—C8—C9 0.6 (6) C28—P2—C34—C39 86.8 (3)
C7—C8—C9—C4 −0.6 (6) C22—P2—C34—C39 −164.7 (3)
C5—C4—C9—C8 0.0 (5) Au1—P2—C34—C39 −32.3 (3)
P1—C4—C9—C8 177.8 (3) C28—P2—C34—C35 −91.1 (3)
C4—P1—C10—C11 −8.8 (3) C22—P2—C34—C35 17.5 (3)
C16—P1—C10—C11 −117.7 (3) Au1—P2—C34—C35 149.9 (3)
Au1—P1—C10—C11 113.0 (3) C39—C34—C35—C36 −0.6 (5)
C4—P1—C10—C15 178.2 (3) P2—C34—C35—C36 177.2 (3)
C16—P1—C10—C15 69.4 (3) C34—C35—C36—C37 −0.9 (6)
Au1—P1—C10—C15 −60.0 (3) C35—C36—C37—C38 1.0 (6)
C15—C10—C11—C12 0.0 (5) C36—C37—C38—C39 0.5 (6)
P1—C10—C11—C12 −172.9 (3) C35—C34—C39—C38 2.1 (5)
C10—C11—C12—C13 −0.5 (5) P2—C34—C39—C38 −175.8 (3)
C11—C12—C13—C14 0.3 (5) C37—C38—C39—C34 −2.0 (5)
C12—C13—C14—C15 0.3 (5)

Symmetry codes: (i) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5253).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358–1367.
  6. Fernandez, E. J., Lopez-de-Luzuriaga, J. M., Monge, M., Olmos, E., Gimeno, M. C., Laguna, A. & Jones, P. G. (1998). Inorg. Chem. 37, 5532–5536. [DOI] [PubMed]
  7. Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  8. Jian, F., Lu, L., Wang, X., Shanmuga Sundara Raj, S., Razak, I. A. & Fun, H.-K. (2000). Acta Cryst. C56, 939–940. [DOI] [PubMed]
  9. Knight, E. R., Leung, N. H., Lin, Y. H., Cowley, A. R., Watkins, D. J., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009a). Dalton Trans. pp. 3688–3697. [DOI] [PubMed]
  10. Knight, E. R., Leung, N. H., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009b). Inorg. Chem. 48, 3866–3874. [DOI] [PubMed]
  11. Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720–2725.
  12. Oliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852–5864. [DOI] [PubMed]
  13. Razak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Jian, F., Bei, F., Yang, X., Lu, L. & Wang, X. (2000). Acta Cryst. C56, 666–667.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Wilton-Ely, J. D. E. T., Solanki, D., Knight, E. R., Holt, K. B., Thompson, A. L. & Hogarth, G. (2008). Inorg. Chem. 47, 9642–9653. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811044229/ng5253sup1.cif

e-67-m1629-sup1.cif (40.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044229/ng5253Isup2.hkl

e-67-m1629-Isup2.hkl (346.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES