Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 29;67(Pt 11):m1633. doi: 10.1107/S1600536811044448

Poly[bis­[μ2-1,4-bis­(1H-imidazol-1-yl)butane]­dichloridonickel(II)]

Jia Zhang a, Jiang-Feng Song a,*
PMCID: PMC3247550  PMID: 22219855

Abstract

The asymmetric unit of the title compound, [NiCl2(C10H14N4)2]n, consists of one Ni2+ ion which is located on an inversion center, one 1,4-bis­(imidazol-1-yl)butane (bimb) and one chloride ion. The Ni2+ ion exhibits a distorted octa­hedral coordination environment defined by four N atoms from four bimb ligands in the equatorial plane and two chloride ions in axial positions. The bridging coordination mode of the bimb ligands leads to the formation of inter­penetrating square Ni4(bimb)4 units that are arranged parallel to (001). The separation between the Ni atoms in these units is 13.740 (3) Å.

Related literature

For related structures based on bis­(imidazole)­alkane ligands, see: Ballester et al. (1998); Li et al. (2004); Zhu et al. (2006, 2009).graphic file with name e-67-m1633-scheme1.jpg

Experimental

Crystal data

  • [NiCl2(C10H14N4)2]

  • M r = 510.11

  • Monoclinic, Inline graphic

  • a = 7.4572 (15) Å

  • b = 18.297 (4) Å

  • c = 8.7321 (17) Å

  • β = 113.60 (3)°

  • V = 1091.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.801, T max = 0.893

  • 10382 measured reflections

  • 2469 independent reflections

  • 2158 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.089

  • S = 1.11

  • 2469 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044448/wm2543sup1.cif

e-67-m1633-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044448/wm2543Isup2.hkl

e-67-m1633-Isup2.hkl (121.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—N4i 2.0980 (19)
Ni1—N1 2.111 (2)
Ni1—Cl1 2.5270 (8)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Young Scholars Foundation of North University of China and the Scientific Research Start-up Foundation of North University of China.

supplementary crystallographic information

Comment

A large number of novel topologies constructed from bis(pyridine)alkane, triazolealkane or bis(imidazole)alkane ligands have been reported in recent years, for example, [Co(bte)2(NCS)2]n, {[Cd(bte)2(H2O)2](NO3)2}n, or [Cd(bimb)2(NCO)2]n [bte=1,2-Bis (1,2,4-triazol-1-yl) ethane, bimb=1,4-bis (imidazol-1-yl) butane] (Ballester et al., 1998; Li et al., 2004; Zhu et al., 2006; Zhu et al., 2009). These ligands show flexible bridging modes and can adopt different conformations (Li et al., 2004). Herein, a new coordination polymer based on 1,4-bis(imidazol-1-yl)-butane, [Ni(bimb)2Cl2]n, is reported.

The asymmetric unit of the title compound consists of one Ni2+ ion which is located on an inversion center, one bimb ligand and one chloride ion. The Ni2+ ion exhibits a distorted octahedral coordination environment defined by four N atoms from four bimp ligands in the equatorial plane [Ni1—N4 = 2.0980 (19) Å; Ni1—N1 = 2.111 (2) Å] and two chloride ions in axial positions [Ni1—Cl1 = 2.5270 (8) Å]. The dihedral angle between the imidazole rings in the bimp ligand is 60.99 (16)°.

Each bimb ligand connects two adjacent Ni2+ ions to form interpenetrating two-dimensional networks containing square Ni4(bimb)4 units parallel to (001) (Figure 2). The square Ni4(bimb)4 units are constructed from four Ni2+ ions which are situated in the four corners and four bimb ligands which are in the edge positions. The Ni ··· Ni distance in the net is 13.740 (3) Å.

Experimental

A solution of ethyl 2,2-difluoro-2-(pyridin-2-yl)acetate (10.0 mg, 0.05 mmol) in 2 ml ethanol was directly mixed with a solution of NiCl2 in 1 ml water (0.10 mol dm-3) at room temperature in a 15 ml beaker. A solution of bimb (9.5 mg, 0.05 mmol) in 3 ml e thanol in another 15 ml beaker was added the above-mentioned mixture. Then 2M HCl was added until the pH value of mixture arrives at 4.5. The resulted mixture was transferred and sealed in a 25 ml Teflon-lined stainless steel reactor, and heated at 85 °C for 72 h. Upon cooling to room temperature, the light green crystals were filtered and washed with water and ethanol.

Refinement

All H atoms were located in a difference Fourier map refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The coordination environment of Ni(II) atom with displacement ellipsoids at the 50% probability level. H atome were omitted for clarity. [Symmetry codes: i) 1.5-x, 0.5+y, 0.5-z; ii) 1.5+x, 0.5+y, 0.5+z; iii) 3-x, 1-y, 1-z]

Fig. 2.

Fig. 2.

View of a two-dimensional layer containing square Ni4(bimb)4 units with dimension of 13.740 (3) × 13.740 (3) Å2 parallel to (001).

Crystal data

[NiCl2(C10H14N4)2] F(000) = 532
Mr = 510.11 Dx = 1.552 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2469 reflections
a = 7.4572 (15) Å θ = 3.1–27.5°
b = 18.297 (4) Å µ = 1.16 mm1
c = 8.7321 (17) Å T = 293 K
β = 113.60 (3)° Block, green
V = 1091.8 (4) Å3 0.20 × 0.15 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 2469 independent reflections
Radiation source: fine-focus sealed tube 2158 reflections with I > 2σ(I)
graphite Rint = 0.037
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −9→9
Tmin = 0.801, Tmax = 0.893 k = −23→23
10382 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0274P)2 + 1.1307P] where P = (Fo2 + 2Fc2)/3
2469 reflections (Δ/σ)max < 0.001
142 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N4 0.1415 (3) 0.10177 (10) 0.0471 (3) 0.0289 (4)
C9 0.0664 (4) 0.16648 (14) 0.0733 (4) 0.0440 (7)
H9 −0.0615 0.1733 0.0630 0.053*
C10 0.2054 (4) 0.21922 (14) 0.1165 (4) 0.0456 (7)
H10 0.1917 0.2678 0.1415 0.055*
C8 0.3245 (3) 0.11623 (13) 0.0740 (3) 0.0298 (5)
H8 0.4118 0.0819 0.0650 0.036*
N3 0.3700 (3) 0.18646 (11) 0.1160 (3) 0.0335 (5)
C7 0.5640 (4) 0.21996 (15) 0.1668 (4) 0.0457 (7)
H7A 0.6545 0.1835 0.1592 0.055*
H7B 0.6092 0.2347 0.2829 0.055*
C6 0.5694 (4) 0.28506 (14) 0.0646 (3) 0.0383 (6)
H6A 0.4725 0.3204 0.0647 0.046*
H6B 0.5361 0.2699 −0.0500 0.046*
Ni1 1.5000 0.5000 0.5000 0.02315 (12)
Cl1 1.30895 (8) 0.46277 (3) 0.66987 (8) 0.03495 (16)
N1 1.2760 (3) 0.45639 (10) 0.2843 (2) 0.0269 (4)
N2 0.9912 (3) 0.41380 (11) 0.1097 (3) 0.0323 (4)
C3 1.0969 (3) 0.43850 (14) 0.2651 (3) 0.0329 (5)
H3 1.0496 0.4425 0.3485 0.039*
C1 1.2840 (4) 0.44240 (13) 0.1329 (3) 0.0320 (5)
H1 1.3929 0.4500 0.1083 0.038*
C2 1.1099 (4) 0.41598 (13) 0.0245 (3) 0.0355 (5)
H2 1.0776 0.4021 −0.0859 0.043*
C5 0.7692 (4) 0.32062 (14) 0.1322 (4) 0.0414 (6)
H5A 0.8052 0.3315 0.2495 0.050*
H5B 0.8631 0.2855 0.1253 0.050*
C4 0.7874 (4) 0.38856 (16) 0.0476 (4) 0.0481 (7)
H4A 0.7393 0.3799 −0.0717 0.058*
H4B 0.7072 0.4264 0.0661 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N4 0.0205 (10) 0.0275 (10) 0.0382 (11) 0.0007 (7) 0.0113 (9) 0.0027 (8)
C9 0.0290 (13) 0.0301 (13) 0.079 (2) 0.0015 (10) 0.0275 (14) 0.0015 (13)
C10 0.0374 (15) 0.0263 (12) 0.080 (2) −0.0011 (10) 0.0303 (15) −0.0013 (13)
C8 0.0236 (12) 0.0295 (11) 0.0370 (13) 0.0006 (9) 0.0128 (10) 0.0031 (9)
N3 0.0224 (10) 0.0295 (10) 0.0472 (12) −0.0034 (8) 0.0126 (9) 0.0058 (9)
C7 0.0240 (13) 0.0422 (15) 0.0624 (18) −0.0085 (11) 0.0085 (13) 0.0115 (13)
C6 0.0279 (13) 0.0359 (13) 0.0446 (14) −0.0107 (10) 0.0078 (11) 0.0010 (11)
Ni1 0.01420 (19) 0.0230 (2) 0.0300 (2) −0.00183 (14) 0.00640 (16) −0.00287 (15)
Cl1 0.0247 (3) 0.0419 (3) 0.0393 (3) −0.0057 (2) 0.0139 (3) −0.0037 (2)
N1 0.0174 (9) 0.0279 (9) 0.0321 (10) −0.0033 (7) 0.0066 (8) −0.0038 (8)
N2 0.0238 (10) 0.0306 (10) 0.0337 (10) −0.0097 (8) 0.0023 (9) 0.0023 (8)
C3 0.0225 (12) 0.0410 (13) 0.0327 (12) −0.0079 (10) 0.0086 (10) −0.0021 (10)
C1 0.0283 (13) 0.0310 (12) 0.0390 (13) −0.0020 (9) 0.0157 (11) −0.0035 (10)
C2 0.0390 (14) 0.0321 (12) 0.0305 (12) −0.0053 (10) 0.0089 (11) −0.0053 (10)
C5 0.0253 (13) 0.0344 (13) 0.0570 (17) −0.0059 (10) 0.0086 (12) 0.0077 (12)
C4 0.0254 (13) 0.0481 (16) 0.0522 (16) −0.0159 (11) −0.0041 (12) 0.0121 (13)

Geometric parameters (Å, °)

N4—C8 1.316 (3) Ni1—N1iv 2.111 (2)
N4—C9 1.368 (3) Ni1—N1 2.111 (2)
N4—Ni1i 2.0980 (19) Ni1—Cl1 2.5270 (8)
C9—C10 1.355 (4) Ni1—Cl1iv 2.5270 (8)
C9—H9 0.9300 N1—C3 1.319 (3)
C10—N3 1.368 (3) N1—C1 1.371 (3)
C10—H10 0.9300 N2—C3 1.346 (3)
C8—N3 1.342 (3) N2—C2 1.366 (3)
C8—H8 0.9300 N2—C4 1.469 (3)
N3—C7 1.467 (3) C3—H3 0.9300
C7—C6 1.499 (4) C1—C2 1.353 (3)
C7—H7A 0.9700 C1—H1 0.9300
C7—H7B 0.9700 C2—H2 0.9300
C6—C5 1.512 (3) C5—C4 1.480 (4)
C6—H6A 0.9700 C5—H5A 0.9700
C6—H6B 0.9700 C5—H5B 0.9700
Ni1—N4ii 2.0980 (19) C4—H4A 0.9700
Ni1—N4iii 2.0980 (19) C4—H4B 0.9700
C8—N4—C9 105.1 (2) N1iv—Ni1—Cl1 90.51 (6)
C8—N4—Ni1i 128.15 (16) N1—Ni1—Cl1 89.49 (6)
C9—N4—Ni1i 126.43 (16) N4ii—Ni1—Cl1iv 89.81 (6)
C10—C9—N4 110.2 (2) N4iii—Ni1—Cl1iv 90.19 (6)
C10—C9—H9 124.9 N1iv—Ni1—Cl1iv 89.49 (6)
N4—C9—H9 124.9 N1—Ni1—Cl1iv 90.51 (6)
C9—C10—N3 105.9 (2) Cl1—Ni1—Cl1iv 180.0
C9—C10—H10 127.0 C3—N1—C1 105.3 (2)
N3—C10—H10 127.0 C3—N1—Ni1 127.33 (17)
N4—C8—N3 111.9 (2) C1—N1—Ni1 127.36 (15)
N4—C8—H8 124.1 C3—N2—C2 107.1 (2)
N3—C8—H8 124.1 C3—N2—C4 125.4 (2)
C8—N3—C10 106.9 (2) C2—N2—C4 127.5 (2)
C8—N3—C7 126.4 (2) N1—C3—N2 111.4 (2)
C10—N3—C7 126.4 (2) N1—C3—H3 124.3
N3—C7—C6 114.2 (2) N2—C3—H3 124.3
N3—C7—H7A 108.7 C2—C1—N1 110.0 (2)
C6—C7—H7A 108.7 C2—C1—H1 125.0
N3—C7—H7B 108.7 N1—C1—H1 125.0
C6—C7—H7B 108.7 C1—C2—N2 106.2 (2)
H7A—C7—H7B 107.6 C1—C2—H2 126.9
C7—C6—C5 111.5 (2) N2—C2—H2 126.9
C7—C6—H6A 109.3 C4—C5—C6 116.1 (2)
C5—C6—H6A 109.3 C4—C5—H5A 108.3
C7—C6—H6B 109.3 C6—C5—H5A 108.3
C5—C6—H6B 109.3 C4—C5—H5B 108.3
H6A—C6—H6B 108.0 C6—C5—H5B 108.3
N4ii—Ni1—N4iii 180.0 H5A—C5—H5B 107.4
N4ii—Ni1—N1iv 90.26 (8) N2—C4—C5 111.6 (2)
N4iii—Ni1—N1iv 89.74 (8) N2—C4—H4A 109.3
N4ii—Ni1—N1 89.74 (8) C5—C4—H4A 109.3
N4iii—Ni1—N1 90.26 (8) N2—C4—H4B 109.3
N1iv—Ni1—N1 180.000 (1) C5—C4—H4B 109.3
N4ii—Ni1—Cl1 90.19 (6) H4A—C4—H4B 108.0
N4iii—Ni1—Cl1 89.81 (6)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+3/2, −y+1/2, z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2543).

References

  1. Ballester, L., Baxter, I., Duncan, P. C. M., Goodgame, D. M. L., Grachvogel, D. A. & Williams, D. J. (1998). Polyhedron, 17, 3613–3623.
  2. Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Li, B., Zhu, X., Zhou, J. H., Peng, Y. F. & Zhang, Y. (2004). Polyhedron, 23, 3133–3141.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhu, X., Ge, H. Y., Zhang, Y. M., Li, B. L. & Zhang, Y. (2006). Polyhedron, 25, 1875–1883.
  7. Zhu, X., Guo, Y. & Zou, Y.-L. (2009). Acta Cryst. E65, m1506. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044448/wm2543sup1.cif

e-67-m1633-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044448/wm2543Isup2.hkl

e-67-m1633-Isup2.hkl (121.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES