Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2817–o2818. doi: 10.1107/S1600536811039559

Diethyl 4,4′-dihy­droxy-3,3′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis­(methyl­ene)}dibenzoate

Augusto Rivera a,*, Diego Quiroga a, Jaime Ríos-Motta a, Karla Fejfarová b, Michal Dušek b
PMCID: PMC3247559  PMID: 22219864

Abstract

The heterocyclic ring in the title compound, C27H34N2O6, has an envelope conformation on one of the bridgehead C atoms [Q(2) = 0.4487 (19) Å and ϕ = 291.3 (2)°]. Two strong intra­molecular O—H⋯N hydrogen bonds stabilize the mol­ecular conformation. The benzoate groups differ in the relative orientations of the ethyl groups, as quanti­fied by the values of the C—O—C—C torsion angles of −86.5 (2) and −178.97 (17)°. The carbonyl groups are nearly coplanar with the benzene rings, forming C—C—C—O torsion angles of 0.9 (3) and 3.4 (3)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For related structures, see: Rivera et al. (2010, 2011a,b ). For the background to this work, see: Van den Enden & Geise (1981); Geise et al. (1971). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).graphic file with name e-67-o2817-scheme1.jpg

Experimental

Crystal data

  • C27H34N2O6

  • M r = 482.6

  • Triclinic, Inline graphic

  • a = 8.1132 (4) Å

  • b = 10.9796 (7) Å

  • c = 15.2450 (8) Å

  • α = 89.580 (5)°

  • β = 81.028 (4)°

  • γ = 70.028 (5)°

  • V = 1259.19 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 120 K

  • 0.46 × 0.18 × 0.11 mm

Data collection

  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.752, T max = 1

  • 11294 measured reflections

  • 4430 independent reflections

  • 3313 reflections with I > 3σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.111

  • S = 1.64

  • 4430 reflections

  • 323 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039559/bt5654sup1.cif

e-67-o2817-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039559/bt5654Isup2.hkl

e-67-o2817-Isup2.hkl (173.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039559/bt5654Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯N1 0.89 (3) 1.82 (3) 2.663 (2) 156.9 (19)
O6—H6o⋯N2 0.91 (2) 1.82 (3) 2.669 (2) 154 (3)
C2—H2⋯O1i 0.96 2.58 3.362 (2) 138
C3—H3⋯O4ii 0.96 2.57 3.436 (2) 151
C8—H8b⋯O1i 0.96 2.57 3.336 (2) 137
C22—H22⋯O3iii 0.96 2.44 3.351 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

supplementary crystallographic information

Comment

The title compound (I) was obtained from ethyl p-hydroxybenzoate and (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane by a Mannich type reaction as an extension of our work on the structural studies of di-Mannich bases with the 2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole chiral core (Rivera et al., 2010; Rivera et al., 2011a,b).

In the molecule of the title compound (Fig. 1), x-rays analysis indicated that in the cyclohexane ring the C7—C2—C3—C4 endocyclic torsion angle is increased from the normal 55° to 65.6 (2) °. The endocyclic N1—C2—C3—N2 torsion angle in the heterocyclic ring is -45.57 (16) °, which is in the order of the maximum value for torsion angles in five-membered rings (Van den Enden & Geise, 1981). These results confirm the existence of a puckering of the perhydrobenzimidazole moiety, where the 1,2-cyclohexanediamine fragment adopts a chair conformation with shorter endocyclic bond angles [C3—C4—C5, 106.90 (17)°; C2—C7—C6, 106.70 (17)°] and longer bond angles [C4—C5—C6, 112.75 (15); C5—C6—C7; 112.22 (17)°] respect to the normal bond angles [111.4 °. Geise et al., 1971] in a ideal chair conformation. The heterocyclic ring has a envelope conformation on C3 (Q(2) = 0.4487 (19) Å, φ = 291.3 (2)°) (Cremer & Pople, 1975) with endocyclic bond angles between 100.86 (13)° and 106.30 (15)° which are shorter respect the tetrahedrical normal bond angles.

The benzoate moieties differ in the relative orientations of the ethyl groups, Fig. 1, as quantified in the values of the C15—O2—C16—C17 and C25—O5—C26—C27 torsion angles of -86.5 (2) and -178.97 (17)°, respectively, which indicate different orientations with respect to the plane of benzoate moiety. The carbonyl groups are nearly coplanar with the benzene rings forming C10—C11—C15—O1 and C20—C21—C25—O4 torsion angles of 0.9 (3)° and 3.4 (3)° respectively. Bond angles around the carbonyl C atom deviate slightly from 120°. The C—C bond lengths between the atoms in the sequences C9, C10 and C12, C13, [1.385 (2) and 1.382 (2) Å] respectively are similar whereas the C10—C11 [1.400 (3) Å] and C11—C12 [1.392 (3) Å], bond lengths are slightly longer because of the influence of the polar C═O group while the C9—C14 [1.359 (2) Å] is shorter and C13—C14 [1.392 (3) Å] is slightly longer because of the influence of the O—H hydrogen bonded groups.

In the crystal, adjacent molecules are connected via intermolecular C—H···O hydrogen bonds, forming an one-dimensional chain which propagates parallel with the c axis (Fig. 2) where one intermolecular hydrogen-bonding R22 (14) (Bernstein et al. 1995) graph-set motifs is generated (Fig 3).

Experimental

To a dioxane:water (7 ml) solution of the aminal (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) prepared previously following described procedures (Murray-Rust & Riddell, 1975), was added dropwise a dioxane solution (3 ml) containing two equivalents of ethyl p-hydroxybenzoate (332 mg, 2.00 mmol). The mixture was refluxed for about 10 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 18%, m.p. = 408–410 K). Single crystals of racemic (I) were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

1H NMR (CDCl3, 400 MHz): δ 1.28 (4H, m), 1.35 (6H, t, 3JH,H = 7.2 Hz), 1.86 (2H, m), 2.07 (2H, m), 2.40 (2H, m), 3.56 (2H, d, 2JH,H = 13.9 Hz, ArCH2N), 3.56 (2H, s, NCH2N), 4.20 (2H, d, 2JH,H = 13.9 Hz, ArCH2N), 4.30 (4H, q, 3JH,H = 7.2 Hz), 6.83 (2H, d, 3JH,H = 8.5 Hz), 7.68 (2H, d, 4JH,H = 2.2 Hz), 7.87 (2H, dd, 3JH,H = 8.5 Hz, 4JH,H = 2.2 Hz). 13C NMR (CDCl3, 100 MHz): δ 14.4, 23.9, 28.9, 56.0, 60.6, 69.1, 75.6, 116.2, 121.0, 121.8, 130.0, 131.2, 161.8, 166.3.

Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with displacement displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH2- groups.

Figures

Fig. 1.

Fig. 1.

A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the molecules of the title compound view along the a axis.

Fig. 3.

Fig. 3.

Dimer formation of the title compound by a R22(14) ring motif.

Crystal data

C27H34N2O6 Z = 2
Mr = 482.6 F(000) = 516
Triclinic, P1 Dx = 1.272 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.5418 Å
a = 8.1132 (4) Å Cell parameters from 4486 reflections
b = 10.9796 (7) Å θ = 2.9–67.1°
c = 15.2450 (8) Å µ = 0.73 mm1
α = 89.580 (5)° T = 120 K
β = 81.028 (4)° Block, colourless
γ = 70.028 (5)° 0.46 × 0.18 × 0.11 mm
V = 1259.19 (13) Å3

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector 4430 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 3313 reflections with I > 3σ(I)
mirror Rint = 0.034
Detector resolution: 10.3784 pixels mm-1 θmax = 67.2°, θmin = 2.9°
Rotation method data acquisition using ω scans h = −8→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −13→12
Tmin = 0.752, Tmax = 1 l = −18→18
11294 measured reflections

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0009I2]
wR(F2) = 0.111 (Δ/σ)max = 0.005
S = 1.64 Δρmax = 0.47 e Å3
4430 reflections Δρmin = −0.24 e Å3
323 parameters Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraints Extinction coefficient: 900 (200)
130 constraints

Special details

Experimental. CrysAlisPro (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.80490 (18) 0.62458 (15) −0.09060 (10) 0.0383 (6)
O2 0.86246 (17) 0.80304 (15) −0.05677 (10) 0.0363 (6)
O3 0.16819 (17) 0.90030 (14) 0.22196 (9) 0.0305 (5)
O4 0.88617 (18) 0.26784 (14) 0.50761 (10) 0.0336 (5)
O5 1.05002 (16) 0.09728 (14) 0.41510 (9) 0.0289 (5)
O6 0.35533 (18) 0.23291 (15) 0.24830 (10) 0.0327 (6)
N1 0.16240 (18) 0.65935 (16) 0.21904 (10) 0.0230 (6)
N2 0.20550 (18) 0.47944 (15) 0.31013 (10) 0.0223 (5)
C1 0.2970 (2) 0.5617 (2) 0.26184 (14) 0.0301 (7)
C2 −0.0010 (2) 0.62702 (18) 0.23985 (12) 0.0215 (6)
C3 0.0186 (2) 0.56664 (18) 0.32802 (12) 0.0212 (6)
C4 −0.1214 (2) 0.5040 (2) 0.35509 (13) 0.0251 (7)
C5 −0.3031 (2) 0.6115 (2) 0.36049 (13) 0.0284 (7)
C6 −0.3246 (2) 0.6841 (2) 0.27465 (13) 0.0289 (7)
C7 −0.1753 (2) 0.7398 (2) 0.24635 (13) 0.0263 (7)
C8 0.2195 (2) 0.66840 (19) 0.12354 (13) 0.0247 (7)
C9 0.3493 (2) 0.74075 (18) 0.10787 (12) 0.0220 (6)
C10 0.5003 (2) 0.69903 (19) 0.04363 (13) 0.0237 (7)
C11 0.6112 (2) 0.77285 (19) 0.02585 (12) 0.0237 (7)
C12 0.5683 (2) 0.89060 (19) 0.07296 (12) 0.0243 (7)
C13 0.4197 (2) 0.93306 (19) 0.13820 (13) 0.0252 (7)
C14 0.3118 (2) 0.85782 (19) 0.15638 (12) 0.0235 (7)
C15 0.7677 (2) 0.7236 (2) −0.04577 (13) 0.0281 (7)
C16 1.0021 (3) 0.7736 (2) −0.13485 (16) 0.0406 (9)
C17 1.1722 (3) 0.6775 (3) −0.11692 (17) 0.0510 (11)
C18 0.2807 (2) 0.42669 (18) 0.38978 (13) 0.0234 (6)
C19 0.4584 (2) 0.31872 (18) 0.36541 (12) 0.0216 (6)
C20 0.5969 (2) 0.30589 (19) 0.41223 (12) 0.0226 (6)
C21 0.7585 (2) 0.20349 (18) 0.39261 (12) 0.0223 (6)
C22 0.7816 (2) 0.11224 (19) 0.32436 (13) 0.0248 (7)
C23 0.6454 (2) 0.1236 (2) 0.27718 (13) 0.0275 (7)
C24 0.4850 (2) 0.22611 (19) 0.29689 (13) 0.0239 (7)
C25 0.9003 (2) 0.19539 (18) 0.44524 (13) 0.0233 (7)
C26 1.2010 (2) 0.0805 (2) 0.45986 (14) 0.0289 (7)
C27 1.3504 (2) −0.0335 (2) 0.41217 (14) 0.0335 (8)
H1a 0.390996 0.509476 0.217022 0.0361*
H1b 0.339167 0.60455 0.303387 0.0361*
H2 −0.009721 0.573115 0.192756 0.0257*
H3 −0.002172 0.624178 0.378853 0.0255*
H4a −0.109705 0.438854 0.310572 0.0301*
H4b −0.109034 0.468638 0.412473 0.0301*
H5a −0.395371 0.574881 0.374116 0.034*
H5b −0.319889 0.671905 0.409118 0.034*
H6a −0.326041 0.626526 0.227901 0.0346*
H6b −0.437513 0.753203 0.282548 0.0346*
H7a −0.186338 0.775993 0.189146 0.0316*
H7b −0.180183 0.802846 0.290901 0.0316*
H8a 0.117525 0.712073 0.096222 0.0296*
H8b 0.274173 0.582741 0.095879 0.0296*
H10 0.529284 0.618178 0.010754 0.0285*
H12 0.642366 0.942596 0.060072 0.0292*
H13 0.390889 1.014069 0.170841 0.0302*
H16a 0.963679 0.740749 −0.183166 0.0488*
H16b 1.021028 0.852032 −0.153732 0.0488*
H17a 1.262112 0.665384 −0.168345 0.0765*
H17b 1.208207 0.708856 −0.067132 0.0765*
H17c 1.156002 0.596333 −0.103694 0.0765*
H18a 0.199541 0.394252 0.426876 0.0281*
H18b 0.295301 0.494797 0.423447 0.0281*
H20 0.581029 0.368816 0.459072 0.0271*
H22 0.892295 0.041523 0.310208 0.0298*
H23 0.66159 0.060322 0.230516 0.033*
H26a 1.172541 0.060967 0.520634 0.0347*
H26b 1.233698 0.156681 0.454438 0.0347*
H27a 1.31469 −0.108441 0.414248 0.0503*
H27b 1.378537 −0.014112 0.351344 0.0503*
H27c 1.453165 −0.050579 0.440505 0.0503*
H3o 0.139 (3) 0.829 (3) 0.2311 (15) 0.0366*
H6o 0.280 (3) 0.316 (3) 0.2587 (16) 0.0393*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0355 (8) 0.0382 (9) 0.0379 (9) −0.0156 (7) 0.0104 (6) −0.0086 (7)
O2 0.0280 (7) 0.0358 (9) 0.0439 (9) −0.0156 (6) 0.0079 (6) −0.0004 (7)
O3 0.0272 (7) 0.0266 (8) 0.0324 (8) −0.0073 (6) 0.0060 (6) −0.0034 (6)
O4 0.0325 (8) 0.0300 (8) 0.0357 (8) −0.0042 (6) −0.0127 (6) −0.0063 (7)
O5 0.0199 (7) 0.0305 (8) 0.0329 (8) −0.0025 (6) −0.0080 (5) −0.0027 (6)
O6 0.0278 (7) 0.0283 (8) 0.0416 (9) −0.0046 (6) −0.0155 (6) −0.0064 (7)
N1 0.0175 (7) 0.0280 (9) 0.0235 (8) −0.0080 (6) −0.0031 (6) 0.0047 (7)
N2 0.0173 (7) 0.0239 (9) 0.0238 (8) −0.0047 (6) −0.0034 (6) 0.0040 (7)
C1 0.0193 (9) 0.0345 (12) 0.0359 (12) −0.0084 (8) −0.0055 (8) 0.0115 (9)
C2 0.0175 (9) 0.0246 (10) 0.0230 (10) −0.0082 (7) −0.0035 (7) 0.0022 (8)
C3 0.0174 (9) 0.0221 (10) 0.0216 (9) −0.0039 (7) −0.0024 (7) −0.0009 (8)
C4 0.0203 (9) 0.0296 (11) 0.0262 (10) −0.0101 (8) −0.0027 (7) 0.0042 (8)
C5 0.0193 (9) 0.0357 (12) 0.0294 (11) −0.0098 (8) −0.0015 (8) 0.0025 (9)
C6 0.0173 (9) 0.0362 (12) 0.0305 (11) −0.0058 (8) −0.0044 (8) 0.0024 (9)
C7 0.0216 (9) 0.0290 (11) 0.0255 (10) −0.0048 (8) −0.0042 (8) 0.0045 (8)
C8 0.0244 (9) 0.0255 (10) 0.0230 (10) −0.0089 (8) 0.0002 (7) 0.0004 (8)
C9 0.0223 (9) 0.0228 (10) 0.0209 (9) −0.0077 (7) −0.0041 (7) 0.0038 (8)
C10 0.0247 (9) 0.0232 (10) 0.0224 (10) −0.0073 (8) −0.0034 (7) 0.0012 (8)
C11 0.0229 (9) 0.0273 (10) 0.0214 (10) −0.0091 (8) −0.0044 (7) 0.0033 (8)
C12 0.0258 (10) 0.0250 (10) 0.0250 (10) −0.0108 (8) −0.0081 (8) 0.0068 (8)
C13 0.0284 (10) 0.0218 (10) 0.0253 (10) −0.0075 (8) −0.0073 (8) 0.0015 (8)
C14 0.0217 (9) 0.0226 (10) 0.0222 (10) −0.0032 (7) −0.0021 (7) 0.0026 (8)
C15 0.0262 (10) 0.0305 (11) 0.0283 (11) −0.0117 (8) −0.0022 (8) 0.0041 (9)
C16 0.0318 (11) 0.0473 (14) 0.0405 (13) −0.0171 (10) 0.0093 (9) 0.0016 (11)
C17 0.0365 (13) 0.0683 (19) 0.0445 (15) −0.0167 (12) 0.0008 (11) 0.0037 (13)
C18 0.0220 (9) 0.0233 (10) 0.0226 (10) −0.0051 (7) −0.0032 (7) 0.0020 (8)
C19 0.0211 (9) 0.0209 (10) 0.0222 (9) −0.0066 (7) −0.0027 (7) 0.0030 (8)
C20 0.0239 (9) 0.0214 (10) 0.0209 (9) −0.0071 (7) −0.0010 (7) 0.0000 (8)
C21 0.0219 (9) 0.0218 (10) 0.0226 (10) −0.0075 (7) −0.0018 (7) 0.0038 (8)
C22 0.0208 (9) 0.0226 (10) 0.0275 (10) −0.0039 (8) −0.0017 (8) −0.0013 (8)
C23 0.0273 (10) 0.0247 (11) 0.0288 (11) −0.0070 (8) −0.0038 (8) −0.0049 (8)
C24 0.0219 (9) 0.0234 (10) 0.0279 (10) −0.0089 (8) −0.0064 (8) 0.0010 (8)
C25 0.0229 (9) 0.0207 (10) 0.0256 (10) −0.0069 (8) −0.0037 (8) 0.0032 (8)
C26 0.0235 (10) 0.0298 (11) 0.0353 (11) −0.0081 (8) −0.0130 (8) 0.0056 (9)
C27 0.0217 (10) 0.0369 (12) 0.0396 (12) −0.0064 (8) −0.0067 (9) 0.0036 (10)

Geometric parameters (Å, °)

O1—C15 1.209 (3) C8—H8b 0.96
O2—C15 1.340 (3) C9—C10 1.385 (2)
O2—C16 1.463 (3) C9—C14 1.403 (3)
O3—C14 1.359 (2) C10—C11 1.400 (3)
O3—H3o 0.89 (3) C10—H10 0.96
O4—C25 1.210 (3) C11—C12 1.392 (3)
O5—C25 1.3364 (19) C11—C15 1.485 (2)
O5—C26 1.451 (3) C12—C13 1.382 (2)
O6—C24 1.360 (3) C12—H12 0.96
O6—H6o 0.91 (2) C13—C14 1.393 (3)
N1—C1 1.476 (2) C13—H13 0.96
N1—C2 1.474 (3) C16—C17 1.487 (3)
N1—C8 1.471 (2) C16—H16a 0.96
N2—C1 1.479 (3) C16—H16b 0.96
N2—C3 1.474 (2) C17—H17a 0.96
N2—C18 1.470 (2) C17—H17b 0.96
C1—H1a 0.96 C17—H17c 0.96
C1—H1b 0.96 C18—C19 1.514 (2)
C2—C3 1.501 (3) C18—H18a 0.96
C2—C7 1.518 (2) C18—H18b 0.96
C2—H2 0.96 C19—C20 1.390 (3)
C3—C4 1.522 (3) C19—C24 1.402 (3)
C3—H3 0.96 C20—C21 1.396 (2)
C4—C5 1.533 (2) C20—H20 0.96
C4—H4a 0.96 C21—C22 1.396 (3)
C4—H4b 0.96 C21—C25 1.481 (3)
C5—C6 1.529 (3) C22—C23 1.380 (3)
C5—H5a 0.96 C22—H22 0.96
C5—H5b 0.96 C23—C24 1.391 (2)
C6—C7 1.539 (3) C23—H23 0.96
C6—H6a 0.96 C26—C27 1.505 (2)
C6—H6b 0.96 C26—H26a 0.96
C7—H7a 0.96 C26—H26b 0.96
C7—H7b 0.96 C27—H27a 0.96
C8—C9 1.512 (3) C27—H27b 0.96
C8—H8a 0.96 C27—H27c 0.96
C15—O2—C16 116.06 (17) C10—C11—C15 117.93 (18)
C14—O3—H3o 102.3 (13) C12—C11—C15 122.6 (2)
C25—O5—C26 117.08 (16) C11—C12—C13 120.4 (2)
C24—O6—H6o 103.4 (18) C11—C12—H12 119.8207
C1—N1—C2 105.79 (16) C13—C12—H12 119.8195
C1—N1—C8 113.67 (13) C12—C13—C14 119.71 (19)
C2—N1—C8 114.09 (16) C12—C13—H13 120.1478
C1—N2—C3 102.83 (14) C14—C13—H13 120.1472
C1—N2—C18 112.75 (16) O3—C14—C9 120.36 (19)
C3—N2—C18 114.62 (13) O3—C14—C13 118.70 (18)
N1—C1—N2 106.30 (15) C9—C14—C13 120.94 (16)
N1—C1—H1a 109.4712 O1—C15—O2 123.33 (17)
N1—C1—H1b 109.4709 O1—C15—C11 124.4 (2)
N2—C1—H1a 109.4716 O2—C15—C11 112.25 (18)
N2—C1—H1b 109.4715 O2—C16—C17 112.13 (19)
H1a—C1—H1b 112.4688 O2—C16—H16a 109.4709
N1—C2—C3 101.91 (15) O2—C16—H16b 109.4712
N1—C2—C7 116.25 (17) C17—C16—H16a 109.4713
N1—C2—H2 110.6306 C17—C16—H16b 109.4715
C3—C2—C7 110.74 (14) H16a—C16—H16b 106.6803
C3—C2—H2 116.1453 C16—C17—H17a 109.4706
C7—C2—H2 101.7775 C16—C17—H17b 109.471
N2—C3—C2 100.86 (13) C16—C17—H17c 109.4713
N2—C3—C4 116.93 (16) H17a—C17—H17b 109.4711
N2—C3—H3 110.9593 H17a—C17—H17c 109.4713
C2—C3—C4 110.85 (17) H17b—C17—H17c 109.4722
C2—C3—H3 117.026 N2—C18—C19 111.38 (14)
C4—C3—H3 100.9923 N2—C18—H18a 109.4715
C3—C4—C5 106.90 (17) N2—C18—H18b 109.4713
C3—C4—H4a 109.4713 C19—C18—H18a 109.4707
C3—C4—H4b 109.4714 C19—C18—H18b 109.4714
C5—C4—H4a 109.4711 H18a—C18—H18b 107.4978
C5—C4—H4b 109.471 C18—C19—C20 121.07 (17)
H4a—C4—H4b 111.9296 C18—C19—C24 120.63 (17)
C4—C5—C6 112.75 (15) C20—C19—C24 118.26 (15)
C4—C5—H5a 109.4716 C19—C20—C21 121.41 (18)
C4—C5—H5b 109.4711 C19—C20—H20 119.2941
C6—C5—H5a 109.4709 C21—C20—H20 119.2942
C6—C5—H5b 109.4716 C20—C21—C22 119.27 (18)
H5a—C5—H5b 105.9755 C20—C21—C25 118.64 (17)
C5—C6—C7 112.22 (17) C22—C21—C25 122.08 (15)
C5—C6—H6a 109.4716 C21—C22—C23 120.05 (15)
C5—C6—H6b 109.4709 C21—C22—H22 119.9737
C7—C6—H6a 109.4709 C23—C22—H22 119.9726
C7—C6—H6b 109.4708 C22—C23—C24 120.36 (19)
H6a—C6—H6b 106.5811 C22—C23—H23 119.8209
C2—C7—C6 106.70 (17) C24—C23—H23 119.8211
C2—C7—H7a 109.4713 O6—C24—C19 121.35 (14)
C2—C7—H7b 109.4711 O6—C24—C23 118.01 (18)
C6—C7—H7a 109.4719 C19—C24—C23 120.64 (19)
C6—C7—H7b 109.4712 O4—C25—O5 123.08 (18)
H7a—C7—H7b 112.1028 O4—C25—C21 125.33 (15)
N1—C8—C9 111.39 (17) O5—C25—C21 111.58 (16)
N1—C8—H8a 109.4707 O5—C26—C27 106.08 (17)
N1—C8—H8b 109.4706 O5—C26—H26a 109.4715
C9—C8—H8a 109.4718 O5—C26—H26b 109.4715
C9—C8—H8b 109.4714 C27—C26—H26a 109.4715
H8a—C8—H8b 107.4817 C27—C26—H26b 109.4709
C8—C9—C10 122.19 (18) H26a—C26—H26b 112.6645
C8—C9—C14 119.30 (15) C26—C27—H27a 109.4704
C10—C9—C14 118.4 (2) C26—C27—H27b 109.4712
C9—C10—C11 121.07 (19) C26—C27—H27c 109.4714
C9—C10—H10 119.4657 H27a—C27—H27b 109.4716
C11—C10—H10 119.4663 H27a—C27—H27c 109.4708
C10—C11—C12 119.46 (16) H27b—C27—H27c 109.4719
N1—C2—C3—N2 −45.57 (16) C20—C21—C25—O4 3.4 (3)
C7—C2—C3—C4 65.6 (2) C15—O2—C16—C17 −86.5 (2)
C10—C11—C15—O1 0.9 (3) C25—O5—C26—C27 −178.97 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3o···N1 0.89 (3) 1.82 (3) 2.663 (2) 156.9 (19)
O6—H6o···N2 0.91 (2) 1.82 (3) 2.669 (2) 154 (3)
C2—H2···O1i 0.96 2.58 3.362 (2) 138
C3—H3···O4ii 0.96 2.57 3.436 (2) 151
C8—H8b···O1i 0.96 2.57 3.336 (2) 137
C22—H22···O3iii 0.96 2.44 3.351 (2) 159

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5654).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Geise, H. J., Buys, H. R. & Mijlhoff, F. C. (1971). J. Mol. Struct. 9, 447–454.
  7. Murray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933–1935.
  8. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  9. Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931. [DOI] [PMC free article] [PubMed]
  10. Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2627–o2628. [DOI] [PMC free article] [PubMed]
  11. Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011b). Acta Cryst. E67, o2297. [DOI] [PMC free article] [PubMed]
  12. Van den Enden, L. & Geise, H. J. (1981). J. Mol. Struct. 74, 309–320.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039559/bt5654sup1.cif

e-67-o2817-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039559/bt5654Isup2.hkl

e-67-o2817-Isup2.hkl (173.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039559/bt5654Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES