Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2824. doi: 10.1107/S1600536811039274

2,4-Dichloro-N-(2,4-dimethyl­phen­yl)benzene­sulfonamide

Vinola Z Rodrigues a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3247564  PMID: 22219869

Abstract

In the title compound, C14H13Cl2NO2S, the C—SO2—NH—C torsion angle is −71.4 (4)°. The sulfonyl and aniline benzene rings are tilted relative to one another by 44.6 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004); Gowda et al. (2000), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007) and on N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Gowda et al. (2005); Rodrigues et al. (2011).graphic file with name e-67-o2824-scheme1.jpg

Experimental

Crystal data

  • C14H13Cl2NO2S

  • M r = 330.21

  • Monoclinic, Inline graphic

  • a = 8.2127 (7) Å

  • b = 12.619 (1) Å

  • c = 14.284 (1) Å

  • β = 90.434 (8)°

  • V = 1480.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 293 K

  • 0.28 × 0.18 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.855, T max = 0.977

  • 5678 measured reflections

  • 3007 independent reflections

  • 1908 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.143

  • S = 1.20

  • 3007 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039274/ds2145sup1.cif

e-67-o2824-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039274/ds2145Isup2.hkl

e-67-o2824-Isup2.hkl (147.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039274/ds2145Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.23 (2) 3.059 (5) 164 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a RFSMS fellowship.

supplementary crystallographic information

Comment

Several biologically important compounds contain the sulfonamide moiety. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 2000), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda et al., 2005; Rodrigues et al., 2011), in the present work, the crystal structure of 2,4-dichloro-N-(2,4-dimethylphenyl)-benzenesulfonamide (I) has been determined (Fig. 1).

The molecule is bent at the S atom with C—SO2—NH—C torsion angle of -71.38 (39)°, compared to the value of 67.45 (17)° in 4-chloro-2-methyl-N-(2,4-dimethylphenyl)benzenesulfonamide (II) (Rodrigues et al., 2011). The sulfonyl and the aniline benzene rings are tilted relative to each other by 44.6 (1)°, compared to the value of 44.5 (1)° in (II).

The other bond parameters in (I) are similar to those observed in (II) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into inversion-related dimers. Part of the crystal structure is shown in Fig. 2.

Experimental

The solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with 2,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N- (2,4-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

Plate like light pink single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C14H13Cl2NO2S F(000) = 680
Mr = 330.21 Dx = 1.482 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1307 reflections
a = 8.2127 (7) Å θ = 2.9–28.1°
b = 12.619 (1) Å µ = 0.58 mm1
c = 14.284 (1) Å T = 293 K
β = 90.434 (8)° Plate, light pink
V = 1480.3 (2) Å3 0.28 × 0.18 × 0.04 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 3007 independent reflections
Radiation source: fine-focus sealed tube 1908 reflections with I > 2σ(I)
graphite Rint = 0.038
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→10
Tmin = 0.855, Tmax = 0.977 k = −15→15
5678 measured reflections l = −17→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0245P)2 + 3.0449P] where P = (Fo2 + 2Fc2)/3
3007 reflections (Δ/σ)max < 0.001
186 parameters Δρmax = 0.40 e Å3
1 restraint Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0688 (5) 0.1655 (3) 0.3481 (3) 0.0296 (10)
C2 0.1271 (5) 0.2584 (4) 0.3079 (3) 0.0343 (11)
C3 0.0195 (6) 0.3363 (4) 0.2776 (3) 0.0394 (12)
H3 0.0583 0.3987 0.2513 0.047*
C4 −0.1440 (6) 0.3202 (4) 0.2870 (3) 0.0405 (12)
C5 −0.2059 (6) 0.2293 (4) 0.3258 (3) 0.0411 (12)
H5 −0.3177 0.2198 0.3315 0.049*
C6 −0.0994 (5) 0.1527 (4) 0.3560 (3) 0.0358 (11)
H6 −0.1401 0.0908 0.3824 0.043*
C7 0.3390 (5) 0.1826 (4) 0.5282 (3) 0.0315 (10)
C8 0.2812 (5) 0.2800 (4) 0.5595 (3) 0.0353 (11)
C9 0.3947 (6) 0.3572 (4) 0.5828 (3) 0.0430 (12)
H9 0.3573 0.4223 0.6043 0.052*
C10 0.5609 (6) 0.3417 (4) 0.5755 (3) 0.0405 (12)
C11 0.6145 (6) 0.2437 (4) 0.5452 (3) 0.0422 (12)
H11 0.7257 0.2309 0.5404 0.051*
C12 0.5057 (6) 0.1650 (4) 0.5221 (3) 0.0394 (12)
H12 0.5439 0.0994 0.5022 0.047*
C13 0.1017 (6) 0.3029 (5) 0.5700 (4) 0.0566 (15)
H13A 0.0528 0.2493 0.6083 0.068*
H13B 0.0504 0.3032 0.5094 0.068*
H13C 0.0878 0.3709 0.5990 0.068*
C14 0.6799 (7) 0.4288 (4) 0.6014 (4) 0.0625 (16)
H14A 0.7536 0.4036 0.6488 0.075*
H14B 0.6212 0.4890 0.6247 0.075*
H14C 0.7403 0.4492 0.5470 0.075*
N1 0.2303 (5) 0.0970 (3) 0.5054 (3) 0.0353 (9)
H1N 0.147 (4) 0.086 (4) 0.540 (3) 0.042*
O1 0.3411 (4) 0.0563 (3) 0.3481 (2) 0.0431 (8)
O2 0.0892 (4) −0.0289 (2) 0.4037 (2) 0.0439 (9)
Cl1 0.33286 (15) 0.28541 (11) 0.29353 (11) 0.0557 (4)
Cl2 −0.27868 (19) 0.41792 (12) 0.24989 (10) 0.0642 (5)
S1 0.19166 (14) 0.06286 (9) 0.39726 (8) 0.0333 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.032 (2) 0.028 (2) 0.028 (2) 0.005 (2) −0.0061 (19) 0.0004 (19)
C2 0.036 (3) 0.036 (3) 0.032 (3) −0.003 (2) 0.002 (2) −0.003 (2)
C3 0.055 (3) 0.031 (3) 0.032 (3) 0.004 (2) 0.000 (2) 0.006 (2)
C4 0.043 (3) 0.048 (3) 0.031 (3) 0.019 (2) −0.004 (2) 0.001 (2)
C5 0.033 (3) 0.054 (3) 0.037 (3) 0.005 (2) 0.000 (2) 0.004 (2)
C6 0.035 (3) 0.037 (3) 0.035 (3) −0.003 (2) −0.001 (2) 0.005 (2)
C7 0.035 (2) 0.033 (3) 0.026 (2) −0.002 (2) −0.0066 (19) 0.003 (2)
C8 0.037 (3) 0.038 (3) 0.031 (3) 0.007 (2) −0.001 (2) −0.002 (2)
C9 0.050 (3) 0.036 (3) 0.043 (3) 0.006 (2) 0.000 (2) −0.006 (2)
C10 0.048 (3) 0.036 (3) 0.037 (3) −0.006 (2) −0.008 (2) 0.004 (2)
C11 0.030 (2) 0.053 (3) 0.044 (3) 0.000 (2) −0.002 (2) 0.000 (3)
C12 0.038 (3) 0.036 (3) 0.043 (3) 0.005 (2) −0.006 (2) −0.004 (2)
C13 0.043 (3) 0.062 (4) 0.065 (4) 0.010 (3) 0.002 (3) −0.015 (3)
C14 0.065 (4) 0.052 (4) 0.070 (4) −0.016 (3) −0.010 (3) 0.002 (3)
N1 0.035 (2) 0.037 (2) 0.034 (2) −0.0042 (19) −0.0019 (17) 0.0029 (18)
O1 0.0390 (19) 0.044 (2) 0.046 (2) 0.0111 (17) −0.0005 (15) −0.0042 (17)
O2 0.051 (2) 0.0267 (18) 0.054 (2) −0.0046 (16) −0.0099 (17) 0.0003 (15)
Cl1 0.0384 (7) 0.0538 (9) 0.0749 (10) −0.0073 (6) 0.0043 (6) 0.0165 (7)
Cl2 0.0728 (10) 0.0639 (10) 0.0556 (9) 0.0386 (8) −0.0043 (7) 0.0067 (7)
S1 0.0363 (6) 0.0271 (6) 0.0365 (7) 0.0036 (5) −0.0052 (5) −0.0008 (5)

Geometric parameters (Å, °)

C1—C2 1.392 (6) C9—C10 1.383 (6)
C1—C6 1.396 (6) C9—H9 0.9300
C1—S1 1.783 (4) C10—C11 1.384 (7)
C2—C3 1.389 (6) C10—C14 1.515 (7)
C2—Cl1 1.737 (4) C11—C12 1.375 (6)
C3—C4 1.365 (6) C11—H11 0.9300
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.374 (7) C13—H13A 0.9600
C4—Cl2 1.737 (5) C13—H13B 0.9600
C5—C6 1.370 (6) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C12 1.391 (6) C14—H14C 0.9600
C7—C8 1.392 (6) N1—S1 1.632 (4)
C7—N1 1.437 (6) N1—H1N 0.855 (19)
C8—C9 1.387 (6) O1—S1 1.421 (3)
C8—C13 1.511 (6) O2—S1 1.435 (3)
C2—C1—C6 118.4 (4) C11—C10—C14 121.2 (5)
C2—C1—S1 125.4 (3) C12—C11—C10 120.9 (4)
C6—C1—S1 116.2 (3) C12—C11—H11 119.6
C3—C2—C1 120.3 (4) C10—C11—H11 119.6
C3—C2—Cl1 116.2 (4) C11—C12—C7 120.5 (4)
C1—C2—Cl1 123.5 (4) C11—C12—H12 119.7
C4—C3—C2 119.2 (4) C7—C12—H12 119.7
C4—C3—H3 120.4 C8—C13—H13A 109.5
C2—C3—H3 120.4 C8—C13—H13B 109.5
C3—C4—C5 122.1 (4) H13A—C13—H13B 109.5
C3—C4—Cl2 119.3 (4) C8—C13—H13C 109.5
C5—C4—Cl2 118.7 (4) H13A—C13—H13C 109.5
C6—C5—C4 118.6 (4) H13B—C13—H13C 109.5
C6—C5—H5 120.7 C10—C14—H14A 109.5
C4—C5—H5 120.7 C10—C14—H14B 109.5
C5—C6—C1 121.5 (4) H14A—C14—H14B 109.5
C5—C6—H6 119.3 C10—C14—H14C 109.5
C1—C6—H6 119.3 H14A—C14—H14C 109.5
C12—C7—C8 120.0 (4) H14B—C14—H14C 109.5
C12—C7—N1 118.4 (4) C7—N1—S1 121.9 (3)
C8—C7—N1 121.6 (4) C7—N1—H1N 119 (3)
C9—C8—C7 117.9 (4) S1—N1—H1N 110 (3)
C9—C8—C13 119.7 (4) O1—S1—O2 119.6 (2)
C7—C8—C13 122.4 (4) O1—S1—N1 108.7 (2)
C10—C9—C8 123.0 (5) O2—S1—N1 105.2 (2)
C10—C9—H9 118.5 O1—S1—C1 109.6 (2)
C8—C9—H9 118.5 O2—S1—C1 106.4 (2)
C9—C10—C11 117.8 (5) N1—S1—C1 106.6 (2)
C9—C10—C14 121.0 (5)
C6—C1—C2—C3 0.7 (6) C8—C9—C10—C11 −1.2 (7)
S1—C1—C2—C3 −175.5 (3) C8—C9—C10—C14 179.7 (5)
C6—C1—C2—Cl1 179.9 (3) C9—C10—C11—C12 0.8 (7)
S1—C1—C2—Cl1 3.7 (6) C14—C10—C11—C12 179.9 (5)
C1—C2—C3—C4 −0.6 (7) C10—C11—C12—C7 0.4 (7)
Cl1—C2—C3—C4 −179.9 (4) C8—C7—C12—C11 −1.2 (7)
C2—C3—C4—C5 0.2 (7) N1—C7—C12—C11 −178.6 (4)
C2—C3—C4—Cl2 179.6 (4) C12—C7—N1—S1 −76.9 (5)
C3—C4—C5—C6 0.1 (7) C8—C7—N1—S1 105.7 (4)
Cl2—C4—C5—C6 −179.3 (4) C7—N1—S1—O1 46.7 (4)
C4—C5—C6—C1 0.0 (7) C7—N1—S1—O2 176.0 (3)
C2—C1—C6—C5 −0.4 (7) C7—N1—S1—C1 −71.4 (4)
S1—C1—C6—C5 176.2 (4) C2—C1—S1—O1 −32.1 (5)
C12—C7—C8—C9 0.7 (7) C6—C1—S1—O1 151.6 (3)
N1—C7—C8—C9 178.0 (4) C2—C1—S1—O2 −162.7 (4)
C12—C7—C8—C13 −178.4 (4) C6—C1—S1—O2 21.0 (4)
N1—C7—C8—C13 −1.1 (7) C2—C1—S1—N1 85.5 (4)
C7—C8—C9—C10 0.5 (7) C6—C1—S1—N1 −90.9 (4)
C13—C8—C9—C10 179.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.86 (2) 2.23 (2) 3.059 (5) 164 (4)

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2145).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. [DOI] [PubMed]
  3. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.
  5. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  6. Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  9. Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2648. [DOI] [PMC free article] [PubMed]
  10. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600–606.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039274/ds2145sup1.cif

e-67-o2824-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039274/ds2145Isup2.hkl

e-67-o2824-Isup2.hkl (147.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039274/ds2145Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES