Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2825. doi: 10.1107/S1600536811039778

4-Chloro-N′-(2-hy­droxy-4-meth­oxy­benzyl­idene)benzohydrazide methanol monosolvate

Feng Zhi a, Rong Wang a, Yi Zhang a, Qiang Wang a, Yi-Lin Yang a,*
PMCID: PMC3247565  PMID: 22219870

Abstract

The title compound, C15H13ClN2O3·CH3OH, was synthesized by the condensation reaction of 2-hy­droxy-4-meth­oxy­benzaldehyde with 4-chloro­benzohydrazide in methanol. The Schiff base mol­ecule displays a trans configuration with respect to the C=N and C—N bonds. The dihedral angle between the two benzene rings is 5.3 (2)°. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen-bond inter­actions into chains running parallel to the a axis. An intra­molecular O—H⋯N hydrogen bond is observed.

Related literature

For background to Schiff base compounds, see: Fan et al. (2007); Kim et al. (2005); Nimitsiriwat et al. (2004). For their biological activity, see: Chen et al. (1997); Ren et al. (2002). For related structures, see: Mohd Lair et al. (2009); Fun et al. (2008); Yang (2008); Zhi (2008, 2009); Zhi & Yang (2007).graphic file with name e-67-o2825-scheme1.jpg

Experimental

Crystal data

  • C15H13ClN2O3·CH4O

  • M r = 336.77

  • Triclinic, Inline graphic

  • a = 6.570 (2) Å

  • b = 10.343 (3) Å

  • c = 12.707 (3) Å

  • α = 100.371 (2)°

  • β = 91.864 (2)°

  • γ = 101.663 (2)°

  • V = 829.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.959, T max = 0.971

  • 5945 measured reflections

  • 3022 independent reflections

  • 1724 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.144

  • S = 1.01

  • 3022 reflections

  • 216 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039778/rz2644sup1.cif

e-67-o2825-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039778/rz2644Isup2.hkl

e-67-o2825-Isup2.hkl (148.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039778/rz2644Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 1.83 2.646 (3) 177
N2—H2⋯O4 0.90 (1) 2.00 (1) 2.876 (3) 163 (2)
O1—H1⋯N1 0.82 1.96 2.676 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Third Affiliated Hospital of Suzhou University is acknowledged.

supplementary crystallographic information

Comment

In recent years, much attention has been focused on the synthesis, structures, and properties of Schiff base compounds (Fan et al., 2007; Kim et al., 2005; Nimitsiriwat et al., 2004). Some of the compounds have been found to have excellent pharmacological and antibacterial activity (Chen et al., 1997; Ren et al., 2002). We report herein the crystal structure of the title new Schiff base compound (Fig. 1) derived from the condensation reaction of 2-hydroxy-4-methoxybenzaldehyde with 4-chlorobenzohydrazide.

The asymmetric unit of the title compound contains a Schiff base molecule and a methanol molecule of crystallization. The Schiff base molecule displays a trans configuration with respect to the C═N and C–N bonds. There is an intramolecular O—H···N hydrogen bond in the molecule. The dihedral angle between the two benzene rings is 5.3 (2)°. All the bond lengths are within normal ranges and comparable to those in other similar compounds (Mohd Lair et al., 2009; Fun et al., 2008; Yang, 2008; Zhi, 2008; Zhi & Yang, 2007; Zhi, 2009). In the crystal (Fig. 2), molecules are linked by N—H···O and O—H···O hydrogen interactions into one-dimensional chains along the a axis (Table 1).

Experimental

2-Hydroxy-4-methoxybenzaldehyde (0.01 mol, 1.52 g) and 4-chlorobenzohydrazide (0.01 mol, 1.71 g) were dissolved in methanol (50 ml). The mixture was stirred at room temperature to give a clear colourless solution. Crystals of the title compound were formed by slow evaporation of the solvent for several days at room temperature.

Refinement

Atom H2 was located in a difference Fourier map and refined with the N—H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically [C—H = 0.93–0.96 Å, O—H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, C) for hydroxy and methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Intramolecular O—H···N hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C15H13ClN2O3·CH4O Z = 2
Mr = 336.77 F(000) = 352
Triclinic, P1 Dx = 1.348 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.570 (2) Å Cell parameters from 1241 reflections
b = 10.343 (3) Å θ = 2.3–24.5°
c = 12.707 (3) Å µ = 0.25 mm1
α = 100.371 (2)° T = 298 K
β = 91.864 (2)° Block, colorless
γ = 101.663 (2)° 0.17 × 0.13 × 0.12 mm
V = 829.7 (4) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3022 independent reflections
Radiation source: fine-focus sealed tube 1724 reflections with I > 2σ(I)
graphite Rint = 0.038
ω scans θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.959, Tmax = 0.971 k = −12→12
5945 measured reflections l = −15→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0633P)2] where P = (Fo2 + 2Fc2)/3
3022 reflections (Δ/σ)max < 0.001
216 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.45941 (17) 1.34163 (8) 0.04723 (7) 0.1057 (4)
N1 0.6218 (3) 0.69152 (19) 0.29276 (16) 0.0550 (6)
N2 0.5628 (3) 0.7970 (2) 0.25424 (18) 0.0544 (6)
O1 0.8829 (3) 0.55918 (18) 0.37185 (18) 0.0764 (6)
H1 0.8513 0.6186 0.3438 0.115*
O2 0.8950 (3) 0.91058 (17) 0.25849 (18) 0.0853 (7)
O3 0.5767 (3) 0.14043 (16) 0.46539 (16) 0.0715 (6)
O4 0.1182 (3) 0.72464 (19) 0.20964 (17) 0.0731 (6)
H4 0.0462 0.7810 0.2227 0.110*
C1 0.5106 (4) 0.4800 (2) 0.34710 (19) 0.0485 (6)
C2 0.7089 (4) 0.4662 (2) 0.3793 (2) 0.0506 (6)
C3 0.7361 (4) 0.3544 (2) 0.42035 (19) 0.0528 (7)
H3 0.8687 0.3472 0.4431 0.063*
C4 0.5660 (4) 0.2544 (2) 0.4272 (2) 0.0533 (7)
C5 0.3685 (4) 0.2649 (3) 0.3942 (2) 0.0652 (8)
H5 0.2542 0.1964 0.3976 0.078*
C6 0.3423 (4) 0.3768 (3) 0.3565 (2) 0.0634 (8)
H6 0.2084 0.3845 0.3366 0.076*
C7 0.4739 (4) 0.5964 (2) 0.30752 (19) 0.0538 (7)
H7 0.3371 0.6024 0.2921 0.065*
C8 0.7072 (4) 0.9011 (2) 0.2375 (2) 0.0565 (7)
C9 0.6350 (4) 1.0083 (2) 0.1913 (2) 0.0526 (7)
C10 0.7810 (5) 1.1221 (3) 0.1836 (2) 0.0669 (8)
H10 0.9185 1.1298 0.2084 0.080*
C11 0.7275 (5) 1.2247 (3) 0.1399 (2) 0.0759 (9)
H11 0.8277 1.3008 0.1355 0.091*
C12 0.5255 (5) 1.2130 (3) 0.1031 (2) 0.0680 (8)
C13 0.3780 (5) 1.1019 (3) 0.1095 (2) 0.0761 (9)
H13 0.2408 1.0951 0.0846 0.091*
C14 0.4322 (4) 0.9993 (3) 0.1531 (2) 0.0699 (8)
H14 0.3311 0.9233 0.1567 0.084*
C15 0.7748 (4) 0.1250 (3) 0.5037 (3) 0.0789 (9)
H15A 0.8623 0.1154 0.4449 0.118*
H15B 0.7574 0.0465 0.5356 0.118*
H15C 0.8382 0.2028 0.5563 0.118*
C16 0.0297 (6) 0.6290 (4) 0.1191 (3) 0.1093 (12)
H16A 0.0040 0.6737 0.0616 0.164*
H16B −0.0994 0.5770 0.1358 0.164*
H16C 0.1236 0.5706 0.0978 0.164*
H2 0.4259 (18) 0.792 (3) 0.240 (2) 0.085 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1478 (9) 0.0832 (6) 0.1065 (7) 0.0441 (6) 0.0043 (6) 0.0498 (5)
N1 0.0538 (13) 0.0482 (12) 0.0692 (14) 0.0191 (11) −0.0014 (11) 0.0188 (10)
N2 0.0448 (13) 0.0522 (12) 0.0731 (15) 0.0169 (11) −0.0001 (11) 0.0227 (11)
O1 0.0478 (11) 0.0667 (12) 0.1210 (17) −0.0033 (9) −0.0109 (11) 0.0546 (11)
O2 0.0489 (12) 0.0643 (12) 0.148 (2) 0.0151 (10) −0.0058 (12) 0.0321 (12)
O3 0.0582 (12) 0.0592 (11) 0.1055 (15) 0.0078 (9) 0.0026 (11) 0.0437 (10)
O4 0.0475 (11) 0.0716 (12) 0.1049 (16) 0.0173 (9) −0.0006 (11) 0.0252 (11)
C1 0.0453 (15) 0.0491 (13) 0.0541 (16) 0.0143 (12) 0.0040 (12) 0.0129 (12)
C2 0.0464 (16) 0.0455 (13) 0.0609 (16) 0.0059 (12) 0.0044 (12) 0.0169 (12)
C3 0.0424 (15) 0.0513 (14) 0.0698 (18) 0.0128 (12) 0.0006 (13) 0.0226 (12)
C4 0.0535 (17) 0.0463 (14) 0.0641 (17) 0.0096 (13) 0.0067 (13) 0.0217 (12)
C5 0.0448 (16) 0.0615 (16) 0.093 (2) 0.0056 (13) 0.0075 (15) 0.0307 (15)
C6 0.0418 (15) 0.0650 (17) 0.089 (2) 0.0121 (13) 0.0052 (14) 0.0290 (15)
C7 0.0476 (16) 0.0541 (15) 0.0650 (18) 0.0177 (13) 0.0027 (13) 0.0175 (13)
C8 0.0472 (17) 0.0488 (15) 0.0755 (19) 0.0152 (13) 0.0041 (14) 0.0113 (13)
C9 0.0525 (16) 0.0473 (14) 0.0616 (17) 0.0157 (12) 0.0072 (13) 0.0133 (12)
C10 0.0622 (18) 0.0604 (17) 0.077 (2) 0.0061 (15) −0.0002 (15) 0.0198 (15)
C11 0.091 (2) 0.0552 (17) 0.081 (2) 0.0040 (16) 0.0001 (18) 0.0276 (15)
C12 0.096 (3) 0.0573 (17) 0.0602 (18) 0.0267 (17) 0.0105 (17) 0.0236 (14)
C13 0.0632 (19) 0.080 (2) 0.102 (2) 0.0287 (16) 0.0104 (17) 0.0439 (18)
C14 0.0574 (19) 0.0624 (17) 0.100 (2) 0.0135 (14) 0.0084 (16) 0.0408 (16)
C15 0.071 (2) 0.0640 (17) 0.110 (2) 0.0128 (16) −0.0042 (18) 0.0434 (17)
C16 0.090 (3) 0.138 (3) 0.095 (3) 0.024 (2) −0.001 (2) 0.012 (2)

Geometric parameters (Å, °)

Cl1—C12 1.736 (3) C5—H5 0.9300
N1—C7 1.280 (3) C6—H6 0.9300
N1—N2 1.390 (3) C7—H7 0.9300
N2—C8 1.337 (3) C8—C9 1.492 (3)
N2—H2 0.901 (10) C9—C10 1.380 (3)
O1—C2 1.355 (3) C9—C14 1.383 (4)
O1—H1 0.8200 C10—C11 1.382 (4)
O2—C8 1.235 (3) C10—H10 0.9300
O3—C4 1.366 (3) C11—C12 1.367 (4)
O3—C15 1.423 (3) C11—H11 0.9300
O4—C16 1.398 (3) C12—C13 1.362 (4)
O4—H4 0.8200 C13—C14 1.383 (4)
C1—C2 1.395 (3) C13—H13 0.9300
C1—C6 1.397 (3) C14—H14 0.9300
C1—C7 1.445 (3) C15—H15A 0.9600
C2—C3 1.392 (3) C15—H15B 0.9600
C3—C4 1.378 (3) C15—H15C 0.9600
C3—H3 0.9300 C16—H16A 0.9600
C4—C5 1.382 (4) C16—H16B 0.9600
C5—C6 1.369 (3) C16—H16C 0.9600
C7—N1—N2 116.3 (2) C10—C9—C14 117.9 (2)
C8—N2—N1 120.2 (2) C10—C9—C8 118.0 (2)
C8—N2—H2 121.7 (18) C14—C9—C8 124.1 (2)
N1—N2—H2 118.1 (18) C9—C10—C11 121.5 (3)
C2—O1—H1 109.5 C9—C10—H10 119.2
C4—O3—C15 118.4 (2) C11—C10—H10 119.2
C16—O4—H4 109.5 C12—C11—C10 119.2 (3)
C2—C1—C6 117.5 (2) C12—C11—H11 120.4
C2—C1—C7 122.8 (2) C10—C11—H11 120.4
C6—C1—C7 119.7 (2) C13—C12—C11 120.6 (3)
O1—C2—C3 116.9 (2) C13—C12—Cl1 120.3 (3)
O1—C2—C1 122.3 (2) C11—C12—Cl1 119.1 (2)
C3—C2—C1 120.8 (2) C12—C13—C14 120.0 (3)
C4—C3—C2 119.7 (2) C12—C13—H13 120.0
C4—C3—H3 120.1 C14—C13—H13 120.0
C2—C3—H3 120.1 C9—C14—C13 120.8 (3)
O3—C4—C3 124.1 (2) C9—C14—H14 119.6
O3—C4—C5 115.4 (2) C13—C14—H14 119.6
C3—C4—C5 120.4 (2) O3—C15—H15A 109.5
C6—C5—C4 119.5 (2) O3—C15—H15B 109.5
C6—C5—H5 120.3 H15A—C15—H15B 109.5
C4—C5—H5 120.3 O3—C15—H15C 109.5
C5—C6—C1 122.0 (2) H15A—C15—H15C 109.5
C5—C6—H6 119.0 H15B—C15—H15C 109.5
C1—C6—H6 119.0 O4—C16—H16A 109.5
N1—C7—C1 122.7 (2) O4—C16—H16B 109.5
N1—C7—H7 118.6 H16A—C16—H16B 109.5
C1—C7—H7 118.6 O4—C16—H16C 109.5
O2—C8—N2 122.4 (2) H16A—C16—H16C 109.5
O2—C8—C9 119.8 (2) H16B—C16—H16C 109.5
N2—C8—C9 117.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O2i 0.82 1.83 2.646 (3) 177.
N2—H2···O4 0.90 (1) 2.00 (1) 2.876 (3) 163 (2)
O1—H1···N1 0.82 1.96 2.676 (3) 146.

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2644).

References

  1. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217–231. [DOI] [PubMed]
  3. Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535–538.
  4. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  5. Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777. [DOI] [PubMed]
  6. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  7. Nimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598–13599. [DOI] [PubMed]
  8. Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Yang, D.-S. (2008). Acta Cryst. E64, o1850. [DOI] [PMC free article] [PubMed]
  12. Zhi, F. (2008). Acta Cryst. E64, o150. [DOI] [PMC free article] [PubMed]
  13. Zhi, F. (2009). Acta Cryst. E65, o623. [DOI] [PMC free article] [PubMed]
  14. Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039778/rz2644sup1.cif

e-67-o2825-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039778/rz2644Isup2.hkl

e-67-o2825-Isup2.hkl (148.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039778/rz2644Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES