Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2828. doi: 10.1107/S1600536811039833

4-({(E)-[2-(But-3-en-1-yl)-1-(prop-2-en-1-yl)-4-sulfanyl-1H-imidazol-5-yl]methyl­idene}amino)-3-phenyl-1H-1,2,4-triazole-5(4H)-thione

Sampath Natarajan a,*, Rita Mathews a
PMCID: PMC3247567  PMID: 22219872

Abstract

In the title compound, C19H20N6S2, the dihedral angle between the phenyl and triazole rings is 24.1 (2)° while the dihedral angles between the imidazole ring and the triazole and phenyl rings are 39.9 (2) and 55.3 (2)°, respectively. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonds which form chains along [10Inline graphic].

Related literature

For biological applications of Schiff base compounds, see: Liang (2003); Bacci et al. (2005). For the biological activity of triazoles and their derivatives, see: Amir et al. (2008); Sztanke et al. (2008); Padmavathi et al. (2008); Thenmozhi et al. (2010). Pharmacological compounds having triazole moieties appear to be very effective aromatese inhibitors for the prevention of breast cancer, see: Ünver et al. (2010).graphic file with name e-67-o2828-scheme1.jpg

Experimental

Crystal data

  • C19H20N6S2

  • M r = 396.53

  • Monoclinic, Inline graphic

  • a = 13.384 (3) Å

  • b = 13.892 (3) Å

  • c = 11.349 (2) Å

  • β = 101.953 (3)°

  • V = 2064.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.23 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 7754 measured reflections

  • 3788 independent reflections

  • 3391 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.139

  • S = 1.07

  • 3788 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039833/kj2187sup1.cif

e-67-o2828-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039833/kj2187Isup2.hkl

e-67-o2828-Isup2.hkl (181.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039833/kj2187Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N16i 0.86 2.05 2.907 (5) 172

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Synthesis and structural investigation of Schiff base compounds have been given attention due to their interesting structural features and potential biological applications (Liang, 2003; Bacci et al., 2005). The biological importance of imidazoles and triazoles has stimulated much work on these heterocycles. Triazole compounds and their derivatives have many applications in medicine and were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti-inflammatory, anticancer and antioxidant properties (Amir et al., 2008; Sztanke et al., 2008; Padmavathi et al., 2008; Thenmozhi et al., 2010). The 1,2,4-triazole group interacts strongly with heme iron and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, it was reported that pharmacological compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatese inhibitors for preventing breast cancer (Ünver et al., 2010). In view of these important applications of imidazolines, here we report the crystal structure of the title compound (Fig. 1).

The title compound contains imidazole and 1,2,4-triazole rings connected by an imine group. A phenyl ring is substituted at position 5 of the triazole ring and the dihedral angle between these rings is 24.1 (2)°. The imidazole and triazole groups are substituted on the imine group (N12—C13) in the E-configuration [N1—N12—C13—C14 = -174.4 (3)°]. The triazole ring is not co-planar with the imidazole ring and this may be due to the substitution of the phenyl ring on the triazole ring. The dihedral angles between the imidazole ring and the triazole and phenyl rings are 39.9 (2)° and 55.3 (2)°, respectively. The imidazole ring is substituted by bulky groups (3-butene, 2-propene) as well as an imine and a thiol group, which gives strain on the ring. The 3-butene and imine substituents show an extended zigzag confirmation with respect to the imidazole ring.

The packing diagram of the title compound viewed down the a axis is shown in Fig. 2. The crystal packing displays intermolecular N—H···N hydrogen bonds (Table 1), which join the molecules into chains in the [1 0 -1] direction.

Experimental

The title compound was synthesized by refluxing 4-amino-5-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mmol) and 2-(but-3-en-1-yl)-1-(prop-2-en-1-yl)-4-sulfanyl-1H-imidazole-5- carbaldehyde (0.01 mmol) in ethanol (50 ml) with a few drops of H2SO4 for 3 h on a water bath. The reaction progress was monitored by TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as a colorless solid in 74% yield. The resulting Schiff base compound was seperated out and crystallized in ethanol.

Refinement

H atoms were positioned geometrically, taking H-bond formation potential into account where necessary, and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, for aromatic N—H = 0.86 Å and for S—H = 1.2 Å. The Uiso parameters for H atoms were constrained to be 1.5Ueq of the carrier atom for the thiol H atom and 1.2Ueq of the carrier atom for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the title molecule with the atom numbering scheme. H atoms were omitted. Displacement ellipsoid are drawn at 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a axis. H atoms not involved in hydrogen bonds were omitted. Dashed lines indicate the intermolecular interactions between the molecules.

Crystal data

C19H20N6S2 F(000) = 832
Mr = 396.53 Dx = 1.276 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 13.384 (3) Å Cell parameters from 7754 reflections
b = 13.892 (3) Å θ = 2.1–27.0°
c = 11.349 (2) Å µ = 0.27 mm1
β = 101.953 (3)° T = 293 K
V = 2064.5 (7) Å3 Prism, pale yellow
Z = 4 0.28 × 0.25 × 0.23 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
graphite θmax = 27.0°, θmin = 2.1°
ω scans h = −16→16
7754 measured reflections k = −17→17
3788 independent reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0788P)2 + 0.8006P] where P = (Fo2 + 2Fc2)/3
3788 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.33 e Å3
2 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.62454 (8) 0.22573 (8) −0.09079 (10) 0.0795 (3)
H1 0.6713 0.1935 −0.1613 0.119*
S2 0.50671 (9) 0.18382 (7) 0.24665 (11) 0.0776 (3)
N1 0.4682 (2) 0.38001 (19) 0.2489 (3) 0.0520 (6)
C2 0.4505 (3) 0.2855 (3) 0.2779 (3) 0.0607 (8)
N3 0.3797 (2) 0.2949 (2) 0.3446 (3) 0.0677 (8)
H3 0.3536 0.2465 0.3748 0.081*
N4 0.3523 (3) 0.3875 (2) 0.3605 (3) 0.0695 (8)
C5 0.4076 (3) 0.4390 (3) 0.3039 (3) 0.0565 (8)
C6 0.3977 (3) 0.5438 (3) 0.2943 (3) 0.0607 (8)
C7 0.4199 (3) 0.5949 (3) 0.1981 (4) 0.0718 (10)
H7 0.4487 0.5641 0.1405 0.086*
C8 0.3985 (4) 0.6924 (3) 0.1887 (5) 0.0930 (14)
H8 0.4135 0.7268 0.1242 0.112*
C9 0.3562 (4) 0.7392 (4) 0.2712 (6) 0.0979 (16)
H9 0.3405 0.8043 0.2621 0.117*
C10 0.3367 (5) 0.6889 (4) 0.3690 (6) 0.1026 (16)
H10 0.3098 0.7205 0.4276 0.123*
C11 0.3571 (4) 0.5923 (3) 0.3796 (5) 0.0864 (13)
H11 0.3434 0.5588 0.4454 0.104*
N12 0.5512 (2) 0.4157 (2) 0.2041 (2) 0.0534 (6)
C13 0.5707 (2) 0.3656 (2) 0.1163 (3) 0.0510 (7)
H13 0.5263 0.3157 0.0863 0.061*
C14 0.6567 (2) 0.3821 (2) 0.0621 (3) 0.0498 (7)
C15 0.6859 (3) 0.3256 (2) −0.0233 (3) 0.0554 (8)
N16 0.7739 (2) 0.3557 (2) −0.0521 (3) 0.0586 (7)
C17 0.8009 (3) 0.4324 (2) 0.0163 (3) 0.0576 (8)
N18 0.7337 (2) 0.45065 (18) 0.0878 (2) 0.0529 (6)
C19 0.7387 (3) 0.5317 (3) 0.1724 (3) 0.0615 (8)
H19A 0.7062 0.5130 0.2378 0.074*
H19B 0.8098 0.5459 0.2067 0.074*
C20 0.6890 (4) 0.6192 (3) 0.1151 (5) 0.0787 (12)
H20 0.6881 0.6715 0.1659 0.094*
C21 0.6481 (5) 0.6321 (4) 0.0080 (6) 0.0983 (16)
H21A 0.6465 0.5826 −0.0475 0.118*
H21B 0.6191 0.6915 −0.0170 0.118*
C22 0.8959 (4) 0.4875 (3) 0.0161 (5) 0.0925 (16)
H22A 0.9024 0.4973 −0.0666 0.111*
H22B 0.8902 0.5503 0.0514 0.111*
C23 0.9883 (4) 0.4404 (4) 0.0821 (9) 0.152 (3)
H23B 0.9879 0.3736 0.0571 0.182*
H23A 0.9880 0.4415 0.1675 0.182*
C24 1.0858 (6) 0.4886 (5) 0.0613 (15) 0.220 (6)
H24 1.0844 0.5505 0.0298 0.264*
C25 1.1675 (6) 0.4425 (8) 0.0880 (11) 0.199 (5)
H25A 1.1677 0.3807 0.1195 0.239*
H25B 1.2281 0.4700 0.0764 0.239*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0824 (7) 0.0741 (6) 0.0920 (7) −0.0194 (5) 0.0409 (6) −0.0316 (5)
S2 0.0906 (7) 0.0572 (5) 0.0970 (7) −0.0004 (5) 0.0467 (6) −0.0015 (5)
N1 0.0515 (14) 0.0552 (15) 0.0571 (15) −0.0019 (11) 0.0294 (12) 0.0031 (12)
C2 0.0590 (19) 0.068 (2) 0.061 (2) −0.0067 (16) 0.0263 (16) 0.0024 (15)
N3 0.0701 (18) 0.0648 (18) 0.081 (2) −0.0029 (14) 0.0454 (16) 0.0120 (15)
N4 0.0696 (18) 0.0688 (18) 0.084 (2) 0.0036 (15) 0.0483 (17) 0.0082 (16)
C5 0.0526 (17) 0.070 (2) 0.0534 (18) 0.0031 (15) 0.0248 (14) 0.0057 (15)
C6 0.0495 (18) 0.0632 (19) 0.075 (2) 0.0059 (15) 0.0267 (16) 0.0011 (17)
C7 0.081 (2) 0.067 (2) 0.074 (2) 0.0027 (19) 0.031 (2) 0.0065 (18)
C8 0.111 (4) 0.076 (3) 0.095 (3) 0.005 (3) 0.027 (3) 0.019 (2)
C9 0.102 (4) 0.066 (3) 0.125 (4) 0.027 (2) 0.022 (3) 0.005 (3)
C10 0.112 (4) 0.082 (3) 0.127 (4) 0.024 (3) 0.057 (3) −0.007 (3)
C11 0.092 (3) 0.087 (3) 0.095 (3) 0.023 (2) 0.053 (3) 0.002 (2)
N12 0.0522 (14) 0.0620 (15) 0.0540 (15) −0.0017 (12) 0.0295 (12) 0.0045 (12)
C13 0.0480 (16) 0.0578 (18) 0.0504 (18) −0.0032 (13) 0.0178 (14) 0.0021 (14)
C14 0.0515 (17) 0.0523 (16) 0.0499 (18) 0.0035 (13) 0.0208 (14) 0.0019 (13)
C15 0.0579 (18) 0.0545 (18) 0.060 (2) 0.0018 (14) 0.0274 (15) −0.0023 (14)
N16 0.0628 (16) 0.0585 (16) 0.0652 (18) −0.0012 (13) 0.0380 (14) −0.0036 (13)
C17 0.063 (2) 0.0534 (17) 0.067 (2) −0.0015 (15) 0.0368 (17) 0.0028 (15)
N18 0.0605 (15) 0.0483 (13) 0.0578 (15) −0.0009 (12) 0.0303 (12) 0.0003 (12)
C19 0.066 (2) 0.0562 (18) 0.067 (2) −0.0088 (15) 0.0261 (17) −0.0108 (15)
C20 0.082 (3) 0.068 (2) 0.089 (3) −0.002 (2) 0.024 (3) −0.016 (2)
C21 0.108 (4) 0.073 (3) 0.106 (4) 0.014 (3) 0.006 (3) −0.002 (3)
C22 0.095 (3) 0.082 (3) 0.125 (4) −0.032 (3) 0.079 (3) −0.029 (3)
C23 0.059 (3) 0.084 (3) 0.322 (11) −0.019 (2) 0.063 (4) −0.027 (5)
C24 0.093 (5) 0.090 (4) 0.514 (19) −0.031 (4) 0.152 (8) −0.058 (7)
C25 0.080 (4) 0.223 (10) 0.314 (14) −0.025 (5) 0.087 (6) −0.018 (10)

Geometric parameters (Å, °)

S1—C15 1.711 (4) C14—C15 1.365 (4)
S1—H1 1.2000 C14—N18 1.389 (4)
S2—C2 1.673 (4) C15—N16 1.352 (4)
N1—C2 1.385 (5) N16—C17 1.324 (5)
N1—C5 1.389 (4) C17—N18 1.355 (4)
N1—N12 1.405 (4) C17—C22 1.485 (5)
C2—N3 1.337 (5) N18—C19 1.472 (4)
N3—N4 1.359 (4) C19—C20 1.471 (6)
N3—H3 0.8600 C19—H19A 0.9700
N4—C5 1.292 (4) C19—H19B 0.9700
C5—C6 1.463 (5) C20—C21 1.239 (7)
C6—C11 1.380 (5) C20—H20 0.9300
C6—C7 1.386 (5) C21—H21A 0.9300
C7—C8 1.384 (6) C21—H21B 0.9300
C7—H7 0.9300 C22—C23 1.461 (9)
C8—C9 1.356 (8) C22—H22A 0.9700
C8—H8 0.9300 C22—H22B 0.9700
C9—C10 1.381 (8) C23—C24 1.529 (8)
C9—H9 0.9300 C23—H23B 0.9700
C10—C11 1.370 (7) C23—H23A 0.9700
C10—H10 0.9300 C24—C25 1.250 (13)
C11—H11 0.9300 C24—H24 0.9300
N12—C13 1.285 (4) C25—H25A 0.9300
C13—C14 1.432 (4) C25—H25B 0.9300
C13—H13 0.9300
C15—S1—H1 109.5 N16—C15—S1 120.2 (2)
C2—N1—C5 107.9 (3) C14—C15—S1 127.1 (3)
C2—N1—N12 127.4 (3) C17—N16—C15 104.6 (3)
C5—N1—N12 122.3 (3) N16—C17—N18 111.6 (3)
N3—C2—N1 102.6 (3) N16—C17—C22 123.0 (3)
N3—C2—S2 127.2 (3) N18—C17—C22 125.4 (3)
N1—C2—S2 130.1 (3) C17—N18—C14 107.5 (3)
C2—N3—N4 114.2 (3) C17—N18—C19 126.0 (3)
C2—N3—H3 122.9 C14—N18—C19 126.4 (3)
N4—N3—H3 122.9 C20—C19—N18 112.8 (3)
C5—N4—N3 105.1 (3) C20—C19—H19A 109.0
N4—C5—N1 110.2 (3) N18—C19—H19A 109.0
N4—C5—C6 122.4 (3) C20—C19—H19B 109.0
N1—C5—C6 127.2 (3) N18—C19—H19B 109.0
C11—C6—C7 118.8 (4) H19A—C19—H19B 107.8
C11—C6—C5 118.4 (4) C21—C20—C19 128.4 (4)
C7—C6—C5 122.6 (3) C21—C20—H20 115.8
C8—C7—C6 119.2 (4) C19—C20—H20 115.8
C8—C7—H7 120.4 C20—C21—H21A 120.0
C6—C7—H7 120.4 C20—C21—H21B 120.0
C9—C8—C7 121.6 (5) H21A—C21—H21B 120.0
C9—C8—H8 119.2 C23—C22—C17 113.7 (4)
C7—C8—H8 119.2 C23—C22—H22A 108.8
C8—C9—C10 119.2 (4) C17—C22—H22A 108.8
C8—C9—H9 120.4 C23—C22—H22B 108.8
C10—C9—H9 120.4 C17—C22—H22B 108.8
C11—C10—C9 119.9 (5) H22A—C22—H22B 107.7
C11—C10—H10 120.1 C22—C23—C24 112.6 (7)
C9—C10—H10 120.1 C22—C23—H23B 109.1
C10—C11—C6 121.2 (5) C24—C23—H23B 109.1
C10—C11—H11 119.4 C22—C23—H23A 109.1
C6—C11—H11 119.4 C24—C23—H23A 109.1
C13—N12—N1 113.1 (3) H23B—C23—H23A 107.8
N12—C13—C14 123.8 (3) C25—C24—C23 118.0 (9)
N12—C13—H13 118.1 C25—C24—H24 121.0
N14—C13—H13 118.1 C23—C24—H24 121.0
C15—C14—N18 103.6 (3) C24—C25—H25A 120.0
C15—C14—C13 125.9 (3) C24—C25—H25B 120.0
N18—C14—C13 130.3 (3) H25A—C25—H25B 120.0
N16—C15—C14 112.7 (3)
C5—N1—C2—N3 1.5 (4) N1—N12—C13—C14 −174.4 (3)
N12—N1—C2—N3 164.0 (3) N12—C13—C14—C15 173.5 (3)
C5—N1—C2—S2 −175.1 (3) N12—C13—C14—N18 −0.4 (5)
N12—N1—C2—S2 −12.6 (6) N18—C14—C15—N16 −0.8 (4)
N1—C2—N3—N4 −0.5 (4) C13—C14—C15—N16 −176.0 (3)
S2—C2—N3—N4 176.2 (3) N18—C14—C15—S1 178.4 (3)
C2—N3—N4—C5 −0.7 (4) C13—C14—C15—S1 3.3 (5)
N3—N4—C5—N1 1.6 (4) C14—C15—N16—C17 0.1 (4)
N3—N4—C5—C6 177.0 (3) S1—C15—N16—C17 −179.2 (3)
C2—N1—C5—N4 −2.0 (4) C15—N16—C17—N18 0.7 (4)
N12—N1—C5—N4 −165.6 (3) C15—N16—C17—C22 178.4 (4)
C2—N1—C5—C6 −177.2 (4) N16—C17—N18—C14 −1.3 (4)
N12—N1—C5—C6 19.2 (5) C22—C17—N18—C14 −178.8 (4)
N4—C5—C6—C11 23.2 (6) N16—C17—N18—C19 −178.2 (3)
N1—C5—C6—C11 −162.2 (4) C22—C17—N18—C19 4.2 (6)
N4—C5—C6—C7 −151.5 (4) C15—C14—N18—C17 1.2 (3)
N1—C5—C6—C7 23.0 (6) C13—C14—N18—C17 176.1 (3)
C11—C6—C7—C8 −1.5 (6) C15—C14—N18—C19 178.1 (3)
C5—C6—C7—C8 173.2 (4) C13—C14—N18—C19 −7.0 (5)
C6—C7—C8—C9 −0.1 (8) C17—N18—C19—C20 86.8 (4)
C7—C8—C9—C10 1.9 (9) C14—N18—C19—C20 −89.6 (4)
C8—C9—C10—C11 −2.1 (9) N18—C19—C20—C21 −2.4 (7)
C9—C10—C11—C6 0.4 (9) N16—C17—C22—C23 −76.5 (6)
C7—C6—C11—C10 1.4 (7) N18—C17—C22—C23 100.8 (5)
C5—C6—C11—C10 −173.5 (5) C17—C22—C23—C24 169.4 (7)
C2—N1—N12—C13 47.3 (4) C22—C23—C24—C25 −162.9 (12)
C5—N1—N12—C13 −152.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···N16i 0.86 2.05 2.907 (5) 172

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2187).

References

  1. Amir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056–2066. [DOI] [PubMed]
  2. Bacci, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397–408. [DOI] [PubMed]
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Liang, F.-Z. (2003). J. Shandong Normal Univ. (Nat. Sci.), 18, 50–51.
  6. Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszen, M. (2008). Eur. J. Med. Chem. 43, 404–419. [DOI] [PubMed]
  10. Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o558. [DOI] [PMC free article] [PubMed]
  11. Ünver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039833/kj2187sup1.cif

e-67-o2828-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039833/kj2187Isup2.hkl

e-67-o2828-Isup2.hkl (181.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039833/kj2187Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES