Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2833. doi: 10.1107/S1600536811039870

3-Amino­benzonitrile–3,5-dinitro­benzoic acid (1/1)

Xuehua Ding a, Shi Wang a,*, Wenrui He a, Wei Huang a
PMCID: PMC3247572  PMID: 22219877

Abstract

The asymmetric unit of the title co-crystal, C7H6N2·C7H4N2O6, contains two formula units of both components. The crystal structure is stabilized by inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, generating a two-dimensional wave-like network. π–π stacking inter­actions [centroid–centroid distances = 3.702 (2), 3.660 (2)and 3.671 (2) Å] stabilize the crystal packing.

Related literature

For general background to hydrogen bonding, see: Desiraju (2002); Prins et al. (2001); Steiner (2002). For background to the applications of co-crystals, see: Bhatt & Desiraju (2008); Etter & Baures (1988); Gao et al. (2004); Hori et al. (2009); Weyna et al. (2009). For the synthesis of co-crystals by complementary functional groups, see: Li et al. (2006); Roy et al. (2009); Wei (2007).graphic file with name e-67-o2833-scheme1.jpg

Experimental

Crystal data

  • C7H6N2·C7H4N2O6

  • M r = 330.26

  • Triclinic, Inline graphic

  • a = 7.4547 (15) Å

  • b = 14.260 (3) Å

  • c = 14.845 (3) Å

  • α = 108.01 (3)°

  • β = 91.90 (3)°

  • γ = 93.37 (3)°

  • V = 1496.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.35 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.969, T max = 0.977

  • 15550 measured reflections

  • 6830 independent reflections

  • 3195 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.159

  • S = 0.99

  • 6830 reflections

  • 461 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039870/kp2355sup1.cif

e-67-o2833-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039870/kp2355Isup2.hkl

e-67-o2833-Isup2.hkl (334.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039870/kp2355Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 1.18 (4) 1.41 (4) 2.590 (2) 173 (3)
N6—H6A⋯N7ii 0.92 (3) 2.32 (4) 3.232 (5) 169 (3)
N6—H6B⋯O12iii 0.90 (3) 2.57 (3) 2.953 (4) 107 (2)
N8—H8A⋯N5iv 0.91 (3) 2.37 (3) 3.262 (5) 170 (3)
N8—H8B⋯O5iii 0.85 (3) 2.48 (4) 3.286 (4) 157 (3)
O7—H9A⋯O8iv 1.23 (5) 1.38 (5) 2.608 (2) 174 (4)
C5—H5A⋯O4v 0.93 2.44 3.321 (3) 158
C12—H12A⋯O11ii 0.93 2.50 3.352 (3) 153
C18—H18A⋯O2vi 0.96 (3) 2.58 (3) 3.421 (4) 147 (2)
C21—H21A⋯O10vii 0.93 2.60 3.451 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported by NJ210003, BJ211008 and in part by the National Basic Research Program of China (2009CB930601).

supplementary crystallographic information

Comment

The self-assembly of two or more different types of molecules to form a multi-component crystal is greatly fascinating to chemists, known as cocrystals. The considerable effort has been devoted to cocrystal formation over decades, due to its extensive applications in construction of organic solid-state materials, such as in the pharmaceutical industry (Weyna et al., 2009), in organic synthesis (Gao et al., 2004), for promoting crystal growth (Etter & Baures, 1988), as luminescent materials (Hori et al., 2009), and for absolute structure determination (Bhatt & Desiraju, 2008). One of the important ways is the utilisation of self-assembly of small molecules through intermolecular interactions to construct cocrystals, which are one-, two- or three-dimensional networks. In the study of intermolecular interactions the central role is the hydrogen bond. The simple way of preparation of cocrystals is to employ the components containing functional groups with hydrogen bonding capability (Li et al., 2006; Roy et al., 2009; Wei, 2007), such as –COOH and –NH2, which can easily result in O—H···N and N—H···O hydrogen bonds.

In this report we have established unambiguously the structure of the cocrystal 3,5-dinitrobenzoic acid with 3-aminobenzonitrile in the solid state by X-ray diffraction analysis. An asymmetric unit of the title compound contains two 3,5-dinitrobenzoic acid and two 3-aminobenzonitrile (Fig. 1). Intermolecular O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds are observed (Fig. 2, Table 1). The hydrogen bonds O—H···O between carboxyl groups results in the dimerization of 3,5-dinitrobenzoic acid. Extensive hydrogen-bonding interactions generate a two-dimensional wave-like network (Fig. 3).

Additionally, the crystal packing is stabilised by aromatic π–π stacking interactions involving the rings of the asymmetric unit with separation distances between their centroids: Cg1(C2→ C7)···Cg3 (C16→ C21) of 3.702 (2) Å, Cg2(C9→ C14)··· Cg3(C16→ C21) of 3.660 (2)Å, and Cg2(C9→ C14)···Cg4(C23→ C28) of 3.671 (2) Å.

Experimental

The cocrystals were prepared from stoichiometric amounts of components in water mixed with metanol (in volume ratio 1:1) and left to evaporate slowly at room temperature.

Refinement

Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). H atoms involved in hydrogen bonds were located from differential Fourier maps and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title cocrystal with the numbering scheme and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of the molecules viewed along the b axis. Hydrogen bonds are drawn as dashed lines.

Fig. 3.

Fig. 3.

Packing diagram of the molecules. Hydrogen bonds are drawn as dashed lines.

Crystal data

C7H6N2·C7H4N2O6 Z = 4
Mr = 330.26 F(000) = 680
Triclinic, P1 Dx = 1.466 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4547 (15) Å Cell parameters from 6830 reflections
b = 14.260 (3) Å θ = 3.0–27.5°
c = 14.845 (3) Å µ = 0.12 mm1
α = 108.01 (3)° T = 293 K
β = 91.90 (3)° Block, colorless
γ = 93.37 (3)° 0.35 × 0.22 × 0.20 mm
V = 1496.0 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 6830 independent reflections
Radiation source: fine-focus sealed tube 3195 reflections with I > 2σ(I)
graphite Rint = 0.056
Detector resolution: 8.366 pixels mm-1 θmax = 27.5°, θmin = 3.0°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −18→18
Tmin = 0.969, Tmax = 0.977 l = −19→19
15550 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0591P)2] where P = (Fo2 + 2Fc2)/3
6830 reflections (Δ/σ)max < 0.001
461 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4080 (3) 0.01643 (18) 0.11993 (16) 0.0553 (6)
C2 0.3392 (3) 0.02905 (17) 0.21487 (15) 0.0490 (6)
C3 0.1637 (3) −0.00114 (17) 0.22396 (15) 0.0490 (6)
H3A 0.0862 −0.0291 0.1707 0.059*
C4 0.1058 (3) 0.01088 (17) 0.31324 (16) 0.0506 (6)
C5 0.2159 (3) 0.05067 (18) 0.39350 (16) 0.0578 (6)
H5A 0.1751 0.0569 0.4534 0.069*
C6 0.3888 (3) 0.08091 (18) 0.38155 (16) 0.0544 (6)
C7 0.4516 (3) 0.07230 (17) 0.29418 (16) 0.0555 (6)
H7A 0.5686 0.0953 0.2884 0.067*
O1 0.3036 (2) −0.03099 (14) 0.04900 (12) 0.0726 (6)
H1A 0.363 (5) −0.035 (3) −0.025 (3) 0.160 (14)*
O2 0.5615 (2) 0.05235 (14) 0.11410 (11) 0.0736 (5)
N1 −0.0818 (3) −0.01956 (18) 0.32279 (18) 0.0721 (6)
O3 −0.1815 (2) −0.04676 (16) 0.25263 (16) 0.0915 (7)
O4 −0.1288 (3) −0.0171 (2) 0.40020 (16) 0.1302 (10)
N2 0.5102 (3) 0.12590 (18) 0.46559 (15) 0.0768 (7)
O5 0.4669 (3) 0.11480 (19) 0.53961 (14) 0.1112 (8)
O6 0.6490 (3) 0.16961 (19) 0.45609 (15) 0.1188 (9)
C8 0.3501 (3) 0.50842 (18) 0.10190 (17) 0.0544 (6)
C9 0.2362 (3) 0.50677 (16) 0.18160 (15) 0.0488 (6)
C10 0.0604 (3) 0.46720 (17) 0.16271 (16) 0.0536 (6)
H10A 0.0117 0.4431 0.1007 0.064*
C11 −0.0412 (3) 0.46423 (18) 0.23756 (17) 0.0527 (6)
C12 0.0242 (3) 0.49980 (17) 0.33016 (16) 0.0544 (6)
H12A −0.0470 0.4979 0.3800 0.065*
C13 0.1991 (3) 0.53816 (17) 0.34579 (15) 0.0527 (6)
C14 0.3074 (3) 0.54240 (17) 0.27369 (16) 0.0517 (6)
H14A 0.4260 0.5687 0.2868 0.062*
N3 −0.2260 (3) 0.41929 (18) 0.21744 (18) 0.0714 (6)
O7 0.2803 (2) 0.47150 (15) 0.01875 (13) 0.0800 (6)
H9A 0.379 (6) 0.469 (3) −0.047 (3) 0.203 (18)*
O8 0.5087 (2) 0.54478 (14) 0.12114 (12) 0.0714 (5)
O9 −0.2761 (2) 0.37659 (17) 0.13605 (16) 0.0941 (7)
O10 −0.3199 (2) 0.42753 (18) 0.28450 (15) 0.1015 (7)
O11 0.1742 (3) 0.58417 (17) 0.50753 (13) 0.1032 (7)
O12 0.4324 (3) 0.6007 (2) 0.45542 (14) 0.1205 (9)
N4 0.2750 (3) 0.57692 (17) 0.44339 (15) 0.0744 (6)
N5 0.3740 (4) 0.2057 (2) −0.0240 (2) 0.1150 (10)
C15 0.2997 (4) 0.2144 (2) 0.0436 (2) 0.0796 (9)
C16 0.2076 (3) 0.22522 (19) 0.12900 (18) 0.0599 (7)
C17 0.0298 (4) 0.1905 (2) 0.1228 (2) 0.0735 (8)
H17A −0.0302 0.1603 0.0641 0.088*
C18 −0.0566 (4) 0.2014 (2) 0.2050 (2) 0.0765 (8)
H18A −0.180 (4) 0.1780 (19) 0.2036 (17) 0.086 (9)*
C19 0.0298 (4) 0.24544 (19) 0.2909 (2) 0.0685 (7)
H19A −0.0323 0.2521 0.3456 0.082*
C20 0.2079 (3) 0.28052 (17) 0.29893 (18) 0.0596 (7)
C21 0.2961 (3) 0.27005 (18) 0.21579 (18) 0.0610 (7)
H21A 0.4159 0.2936 0.2189 0.073*
N6 0.2934 (5) 0.3273 (2) 0.3859 (2) 0.0891 (8)
H6A 0.240 (5) 0.317 (3) 0.437 (3) 0.127 (14)*
H6B 0.410 (4) 0.341 (2) 0.378 (2) 0.109 (13)*
N7 −0.1478 (4) 0.7302 (2) 0.4340 (2) 0.1190 (11)
C22 −0.0799 (4) 0.7346 (2) 0.3675 (2) 0.0822 (9)
C23 0.0139 (3) 0.73855 (18) 0.28564 (19) 0.0606 (7)
C24 −0.0753 (4) 0.7084 (2) 0.1977 (2) 0.0732 (8)
H24A −0.1966 0.6869 0.1906 0.088*
C25 0.0187 (4) 0.7110 (2) 0.1210 (2) 0.0771 (8)
H25A −0.0403 0.6921 0.0613 0.093*
C26 0.1980 (4) 0.74096 (19) 0.13031 (18) 0.0664 (7)
H26A 0.2596 0.7403 0.0767 0.080*
C27 0.2891 (3) 0.77223 (18) 0.21843 (18) 0.0584 (6)
C28 0.1939 (3) 0.76999 (17) 0.29630 (17) 0.0588 (6)
H28A 0.2519 0.7899 0.3563 0.071*
N8 0.4678 (4) 0.8027 (2) 0.2284 (3) 0.0883 (8)
H8A 0.524 (4) 0.806 (2) 0.176 (2) 0.103 (12)*
H8B 0.517 (5) 0.825 (3) 0.284 (3) 0.126 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0514 (14) 0.0662 (17) 0.0432 (14) −0.0022 (12) 0.0060 (12) 0.0104 (13)
C2 0.0527 (14) 0.0535 (15) 0.0398 (13) 0.0060 (11) 0.0078 (11) 0.0119 (11)
C3 0.0552 (14) 0.0509 (14) 0.0424 (13) 0.0036 (11) 0.0047 (10) 0.0165 (11)
C4 0.0527 (13) 0.0536 (15) 0.0512 (15) 0.0053 (11) 0.0119 (11) 0.0233 (12)
C5 0.0707 (17) 0.0647 (17) 0.0426 (14) 0.0115 (13) 0.0127 (12) 0.0215 (13)
C6 0.0657 (15) 0.0574 (16) 0.0389 (13) 0.0058 (12) 0.0027 (11) 0.0129 (12)
C7 0.0528 (14) 0.0614 (16) 0.0509 (15) 0.0007 (12) 0.0048 (12) 0.0158 (13)
O1 0.0636 (10) 0.1044 (15) 0.0372 (10) −0.0161 (10) 0.0058 (8) 0.0072 (10)
O2 0.0595 (11) 0.1067 (15) 0.0433 (10) −0.0163 (10) 0.0104 (8) 0.0101 (10)
N1 0.0651 (15) 0.0872 (17) 0.0704 (17) −0.0002 (12) 0.0185 (13) 0.0335 (14)
O3 0.0583 (11) 0.1231 (18) 0.0878 (15) −0.0115 (11) 0.0058 (11) 0.0283 (14)
O4 0.0954 (16) 0.225 (3) 0.0855 (16) −0.0204 (16) 0.0314 (13) 0.0746 (18)
N2 0.0839 (17) 0.0953 (19) 0.0439 (14) −0.0009 (14) −0.0024 (12) 0.0128 (13)
O5 0.1111 (17) 0.174 (2) 0.0451 (12) −0.0154 (15) −0.0068 (11) 0.0355 (14)
O6 0.1040 (17) 0.166 (2) 0.0704 (14) −0.0510 (17) −0.0168 (12) 0.0260 (15)
C8 0.0540 (15) 0.0601 (16) 0.0460 (15) 0.0010 (12) 0.0094 (12) 0.0121 (12)
C9 0.0539 (14) 0.0493 (14) 0.0433 (13) 0.0032 (11) 0.0108 (11) 0.0140 (11)
C10 0.0548 (14) 0.0584 (16) 0.0475 (14) 0.0034 (12) 0.0030 (11) 0.0163 (12)
C11 0.0449 (13) 0.0606 (16) 0.0584 (16) 0.0046 (11) 0.0109 (11) 0.0260 (13)
C12 0.0607 (15) 0.0575 (16) 0.0506 (15) 0.0067 (12) 0.0184 (12) 0.0231 (13)
C13 0.0616 (15) 0.0559 (15) 0.0408 (14) −0.0003 (12) 0.0070 (11) 0.0157 (12)
C14 0.0508 (13) 0.0543 (15) 0.0487 (14) −0.0002 (11) 0.0077 (11) 0.0143 (12)
N3 0.0505 (13) 0.0916 (18) 0.0756 (17) 0.0002 (12) 0.0066 (13) 0.0320 (15)
O7 0.0728 (12) 0.1110 (16) 0.0450 (11) −0.0172 (10) 0.0127 (9) 0.0115 (11)
O8 0.0577 (11) 0.0959 (14) 0.0535 (11) −0.0099 (10) 0.0156 (8) 0.0143 (10)
O9 0.0639 (12) 0.1283 (19) 0.0836 (15) −0.0143 (11) −0.0095 (11) 0.0288 (14)
O10 0.0590 (12) 0.158 (2) 0.0921 (16) −0.0105 (12) 0.0214 (11) 0.0475 (15)
O11 0.1285 (17) 0.132 (2) 0.0450 (11) −0.0182 (14) 0.0226 (12) 0.0245 (12)
O12 0.0902 (15) 0.187 (3) 0.0614 (13) −0.0423 (16) −0.0114 (11) 0.0159 (14)
N4 0.0881 (17) 0.0858 (18) 0.0440 (13) −0.0099 (14) 0.0041 (13) 0.0154 (12)
N5 0.121 (2) 0.157 (3) 0.080 (2) 0.017 (2) 0.0235 (18) 0.053 (2)
C15 0.085 (2) 0.091 (2) 0.070 (2) 0.0088 (17) 0.0048 (17) 0.0367 (19)
C16 0.0650 (16) 0.0612 (17) 0.0546 (16) 0.0017 (13) 0.0008 (13) 0.0205 (14)
C17 0.0744 (18) 0.0696 (19) 0.0684 (19) −0.0075 (15) −0.0126 (15) 0.0137 (15)
C18 0.0634 (18) 0.075 (2) 0.087 (2) −0.0125 (15) 0.0020 (17) 0.0222 (18)
C19 0.0726 (18) 0.0608 (18) 0.0721 (19) 0.0004 (14) 0.0124 (15) 0.0207 (15)
C20 0.0746 (17) 0.0462 (15) 0.0561 (17) 0.0016 (13) −0.0079 (13) 0.0148 (13)
C21 0.0554 (14) 0.0606 (17) 0.0694 (18) −0.0029 (12) −0.0033 (13) 0.0258 (14)
N6 0.107 (2) 0.093 (2) 0.0613 (18) −0.0088 (18) −0.0128 (17) 0.0202 (15)
N7 0.146 (3) 0.112 (3) 0.107 (2) 0.0211 (19) 0.064 (2) 0.039 (2)
C22 0.091 (2) 0.071 (2) 0.087 (2) 0.0170 (16) 0.0310 (18) 0.0229 (18)
C23 0.0673 (16) 0.0535 (16) 0.0616 (17) 0.0104 (13) 0.0117 (14) 0.0168 (13)
C24 0.0606 (16) 0.0712 (19) 0.083 (2) 0.0050 (14) −0.0036 (15) 0.0177 (17)
C25 0.090 (2) 0.076 (2) 0.0602 (18) 0.0097 (16) −0.0166 (16) 0.0141 (16)
C26 0.0819 (19) 0.0663 (18) 0.0503 (16) 0.0071 (15) 0.0052 (14) 0.0169 (14)
C27 0.0653 (16) 0.0498 (15) 0.0593 (17) 0.0047 (12) 0.0038 (13) 0.0156 (13)
C28 0.0711 (17) 0.0541 (16) 0.0477 (15) 0.0046 (13) −0.0056 (12) 0.0117 (13)
N8 0.0720 (18) 0.102 (2) 0.084 (2) −0.0103 (15) 0.0072 (17) 0.0221 (19)

Geometric parameters (Å, °)

C1—O2 1.243 (3) N3—O10 1.216 (3)
C1—O1 1.271 (3) O7—H9A 1.23 (5)
C1—C2 1.478 (3) O11—N4 1.216 (3)
C2—C7 1.376 (3) O12—N4 1.194 (3)
C2—C3 1.377 (3) N5—C15 1.139 (3)
C3—C4 1.371 (3) C15—C16 1.433 (4)
C3—H3A 0.9300 C16—C21 1.374 (3)
C4—C5 1.370 (3) C16—C17 1.377 (3)
C4—N1 1.464 (3) C17—C18 1.370 (4)
C5—C6 1.369 (3) C17—H17A 0.9300
C5—H5A 0.9300 C18—C19 1.356 (4)
C6—C7 1.366 (3) C18—H18A 0.96 (3)
C6—N2 1.466 (3) C19—C20 1.379 (3)
C7—H7A 0.9300 C19—H19A 0.9300
O1—H1A 1.18 (4) C20—N6 1.371 (3)
N1—O4 1.203 (3) C20—C21 1.389 (3)
N1—O3 1.206 (3) C21—H21A 0.9300
N2—O5 1.209 (3) N6—H6A 0.92 (3)
N2—O6 1.211 (3) N6—H6B 0.90 (3)
C8—O8 1.250 (3) N7—C22 1.140 (3)
C8—O7 1.263 (3) C22—C23 1.437 (4)
C8—C9 1.484 (3) C23—C24 1.376 (4)
C9—C14 1.378 (3) C23—C28 1.377 (3)
C9—C10 1.380 (3) C24—C25 1.365 (4)
C10—C11 1.375 (3) C24—H24A 0.9300
C10—H10A 0.9300 C25—C26 1.369 (4)
C11—C12 1.371 (3) C25—H25A 0.9300
C11—N3 1.466 (3) C26—C27 1.384 (3)
C12—C13 1.368 (3) C26—H26A 0.9300
C12—H12A 0.9300 C27—N8 1.365 (3)
C13—C14 1.376 (3) C27—C28 1.384 (3)
C13—N4 1.462 (3) C28—H28A 0.9300
C14—H14A 0.9300 N8—H8A 0.91 (3)
N3—O9 1.208 (3) N8—H8B 0.85 (3)
O2—C1—O1 124.3 (2) O9—N3—C11 118.6 (2)
O2—C1—C2 118.9 (2) O10—N3—C11 117.5 (2)
O1—C1—C2 116.8 (2) C8—O7—H9A 116.9 (18)
C7—C2—C3 120.3 (2) O12—N4—O11 123.8 (2)
C7—C2—C1 119.4 (2) O12—N4—C13 118.0 (2)
C3—C2—C1 120.3 (2) O11—N4—C13 118.3 (2)
C4—C3—C2 118.5 (2) N5—C15—C16 179.5 (3)
C4—C3—H3A 120.8 C21—C16—C17 120.7 (2)
C2—C3—H3A 120.8 C21—C16—C15 120.2 (2)
C5—C4—C3 122.7 (2) C17—C16—C15 119.1 (3)
C5—C4—N1 119.0 (2) C18—C17—C16 118.5 (3)
C3—C4—N1 118.4 (2) C18—C17—H17A 120.7
C6—C5—C4 117.1 (2) C16—C17—H17A 120.7
C6—C5—H5A 121.5 C19—C18—C17 121.1 (3)
C4—C5—H5A 121.5 C19—C18—H18A 118.0 (15)
C7—C6—C5 122.4 (2) C17—C18—H18A 120.9 (15)
C7—C6—N2 118.6 (2) C18—C19—C20 121.4 (3)
C5—C6—N2 118.9 (2) C18—C19—H19A 119.3
C6—C7—C2 119.0 (2) C20—C19—H19A 119.3
C6—C7—H7A 120.5 N6—C20—C19 121.1 (3)
C2—C7—H7A 120.5 N6—C20—C21 121.1 (3)
C1—O1—H1A 113.5 (16) C19—C20—C21 117.7 (2)
O4—N1—O3 123.0 (2) C16—C21—C20 120.5 (2)
O4—N1—C4 118.5 (3) C16—C21—H21A 119.7
O3—N1—C4 118.5 (2) C20—C21—H21A 119.7
O5—N2—O6 124.3 (2) C20—N6—H6A 116 (2)
O5—N2—C6 117.6 (2) C20—N6—H6B 109 (2)
O6—N2—C6 118.1 (2) H6A—N6—H6B 129 (3)
O8—C8—O7 124.3 (2) N7—C22—C23 177.1 (4)
O8—C8—C9 118.2 (2) C24—C23—C28 121.0 (2)
O7—C8—C9 117.5 (2) C24—C23—C22 119.8 (3)
C14—C9—C10 120.4 (2) C28—C23—C22 119.2 (3)
C14—C9—C8 120.0 (2) C25—C24—C23 118.4 (3)
C10—C9—C8 119.6 (2) C25—C24—H24A 120.8
C11—C10—C9 118.6 (2) C23—C24—H24A 120.8
C11—C10—H10A 120.7 C24—C25—C26 121.3 (3)
C9—C10—H10A 120.7 C24—C25—H25A 119.3
C12—C11—C10 122.8 (2) C26—C25—H25A 119.3
C12—C11—N3 118.6 (2) C25—C26—C27 120.9 (3)
C10—C11—N3 118.6 (2) C25—C26—H26A 119.5
C13—C12—C11 116.8 (2) C27—C26—H26A 119.5
C13—C12—H12A 121.6 N8—C27—C26 121.3 (3)
C11—C12—H12A 121.6 N8—C27—C28 120.8 (3)
C12—C13—C14 122.9 (2) C26—C27—C28 117.8 (2)
C12—C13—N4 118.8 (2) C23—C28—C27 120.6 (2)
C14—C13—N4 118.2 (2) C23—C28—H28A 119.7
C13—C14—C9 118.5 (2) C27—C28—H28A 119.7
C13—C14—H14A 120.7 C27—N8—H8A 118 (2)
C9—C14—H14A 120.7 C27—N8—H8B 118 (2)
O9—N3—O10 123.9 (2) H8A—N8—H8B 123 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2i 1.18 (4) 1.41 (4) 2.590 (2) 173 (3)
N6—H6A···N7ii 0.92 (3) 2.32 (4) 3.232 (5) 169 (3)
N6—H6B···O12iii 0.90 (3) 2.57 (3) 2.953 (4) 107 (2)
N8—H8A···N5iv 0.91 (3) 2.37 (3) 3.262 (5) 170 (3)
N8—H8B···O5iii 0.85 (3) 2.48 (4) 3.286 (4) 157 (3)
O7—H9A···O8iv 1.23 (5) 1.38 (5) 2.608 (2) 174 (4)
C5—H5A···O4v 0.93 2.44 3.321 (3) 158.
C12—H12A···O11ii 0.93 2.50 3.352 (3) 153.
C18—H18A···O2vi 0.96 (3) 2.58 (3) 3.421 (4) 147 (2)
C21—H21A···O10vii 0.93 2.60 3.451 (3) 153.

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) −x, −y, −z+1; (vi) x−1, y, z; (vii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2355).

References

  1. Bhatt, P. M. & Desiraju, G. R. (2008). CrystEngComm, 10, 1747–1749.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. [DOI] [PubMed]
  4. Etter, M. C. & Baures, P. W. (1988). J. Am. Chem. Soc. 110, 639–640.
  5. Gao, X. C., Friscic, T. & Macgillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236. [DOI] [PubMed]
  6. Hori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567–569.
  7. Li, C., Robinson, P. D. & Dyer, D. J. (2006). Acta Cryst. C62, o336–o338. [DOI] [PubMed]
  8. Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382–2426. [DOI] [PubMed]
  9. Roy, S., Mahata, G. & Biradha, K. (2009). Cryst. Growth Des. 9, 5006–5008.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  13. Wei, L.-H. (2007). Acta Cryst. E63, o4174.
  14. Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039870/kp2355sup1.cif

e-67-o2833-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039870/kp2355Isup2.hkl

e-67-o2833-Isup2.hkl (334.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039870/kp2355Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES