Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2840–o2841. doi: 10.1107/S1600536811040165

Phenyl 4,6-di-O-acetyl-2,3-dide­oxy-1-thio-α-d-erythro-hex-2-enopyran­oside

Henok H Kinfe a,*, Fanuel M Mebrahtu a, Alfred Muller a,*
PMCID: PMC3247579  PMID: 22219884

Abstract

The pyranosyl ring in the title compound, C16H18O5S, adopts an envelope conformation, with the acetyl groups in equatorial positions. In the crystal, weak C—H⋯O inter­actions link the molecules into chains.

Related literature

For details of the Ferrier arrangement, see: Ferrier & Prasad (1969). For the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995); Yadav et al. (2001). For applications of pseudoglycals, see: Domon et al. (2005); Danishefsky & Bilodeau (1996); Griffith & Danishefsky (1991); Halcomb et al. (1995); Bracherro et al. (1998); Dorgan & Jackson (1996); Chambers et al. (2005); Minuth & Boysen (2009). For background to the synthetic methodology of glycosides, see: Kinfe et al. (2011). For the preparation of the acid catalyst NaHSO4-SiO2, see: Breton (1997). For ring puckering analysis see, Cremer & Pople (1975). For a description of the Csambridge Structural Database, see: Allen (2002).graphic file with name e-67-o2840-scheme1.jpg

Experimental

Crystal data

  • C16H18O5S

  • M r = 322.36

  • Monoclinic, Inline graphic

  • a = 5.2330 (4) Å

  • b = 13.470 (1) Å

  • c = 11.1760 (9) Å

  • β = 97.291 (2)°

  • V = 781.41 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.42 × 0.37 × 0.27 mm

Data collection

  • Bruker APEXII DUO 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.910, T max = 0.941

  • 10609 measured reflections

  • 3839 independent reflections

  • 3771 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.066

  • S = 1.06

  • 3839 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1824 Friedel pairs

  • Flack parameter: 0.04 (4)

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040165/fj2451sup1.cif

e-67-o2840-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040165/fj2451Isup2.hkl

e-67-o2840-Isup2.hkl (184.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O5i 0.98 2.44 3.3506 (15) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mr C. Ncube is thanked for the data collection.

supplementary crystallographic information

Comment

Glycals, 1,2-unsaturated pyranoses, undergo acid catalyzed allylic rearrangement in the presence of alcohols to provide 2,3-unsaturated glycosides (pseudoglycals) (see Ferrier & Prasad, 1969). This reaction is referred as the Ferrier rearrangement reaction. Since the reaction proceeds via an oxycarbonium intermediate, thiols, halides and other nucleophiles can be employed besides alcohols to produce corresponding glycosides (see López et al., 1995; Yadav et al., 2001). The pseudoglycal products from the Ferrier rearrangement reaction have been used as chiral building blocks in the synthesis of antibiotics (see Domon et al., 2005), oligosaccharides (see Danishefsky & Bilodeau, 1996; Griffith & Danishefsky, 1991; Halcomb et al., 1995), nucleosides (see Bracherro et al., 1998), glycopeptides (see Dorgan & Jackson, 1996; Chambers et al., 2005) and also as chiral ligands in asymmetric synthesis (see Minuth & Boysen, 2009). Among other thioglycosides, phenyl 2,3-unsaturated thioglycosides have been extensively employed in organic synthesis such as in the elegant total synthesis of allosamidin (chitinase inhibitor), esperamicin and Calicheamicin (see Danishefsky & Bilodeau, 1996; Griffith & Danishefsky, 1991; Halcomb et al., 1995). Due to the importance of this type of thioglycosides, herein we report the structural analysis of phenyl 2,3-unsaturated thioglycoside I.

The title compound (see Fig. 1, scheme 1) crystallizes in the P21 (Z=2) space group resulting in molecules lying on general positions in the unit cell. All bond lengths are within their normal ranges (Allen, 2002) with the acetyl groups all in equatorial positions. The pyran ring is in an envelope conformation with ring puckering parameters of q2 = 0.4212 (12) Å, q3 = 0.2974 (12) Å, Q = 0.5156 (11) Å and φ2 = 321.05 (17)° (see Cremer & Pople, 1975). Weak C—H···O/S interactions (see Table 1) stabilize the crystal structure.

Experimental

To a solution of a tri-O-acetyl-D-glucal (100 mg, 0.36 mmol) in CH3CN (1 ml) NaHSO4-SiO2 (2.5 mg, 3.0 mmol NaHSO4/g) was added (see Breton, 1997). The resulting mixture was stirred at 80 °C for 5 min. After adding silica gel to the reaction mixture at room temperature, the solvent was evaporated in vacuo without heating until a free-flowing solid was obtained. The resulting solid was column chromatographed using 1:9 ethyl acetate:hexane eluent to afford α:β (4:1) mixture of 2,3-unsaturated glycosides in 96% yield as a white solid (see Kinfe et al., 2011). Recrystalization from a mixture of DCM and hexane afforded the title thioglycoside I in 60% yield as white crystals. Analytical data: 1H NMR (CDCl3, 300 MHz): δ 7.51 (d, J = 7.2 Hz, 2H), 7.29–7.17 (m, 3H), 6.03 (d, J = 10.2 Hz, 1H), 5.83 (d, J = 10.8 Hz, 1H), 5.73 (s, 1H), 5.35 (d, J = 9.6 Hz, 1H), 4.60–4.13 (m, 3H), 2.07 (s, 3H), 2.03 (s, 3H); 13C NMR (CDCl3, 75 MHz): δ 170.7, 170.2, 134.7, 131.7, 128.9, 128.5, 127.6, 83.6, 67.2, 65.0, 63.0, 20.9, 20.7.

Refinement

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The D enantiomer refined to a final Flack parameter of 0.04 (4). The highest residual electron density of 0.31 e.Å-3 is 0.88 Å from S1 representing no physical meaning.

Figures

Fig. 1.

Fig. 1.

View of (I). Displacement ellipsoids are drawn at a 50% probability level.

Crystal data

C16H18O5S F(000) = 340
Mr = 322.36 Dx = 1.37 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 7987 reflections
a = 5.2330 (4) Å θ = 3.0–28.3°
b = 13.470 (1) Å µ = 0.23 mm1
c = 11.1760 (9) Å T = 100 K
β = 97.291 (2)° Prism, colourless
V = 781.41 (10) Å3 0.42 × 0.37 × 0.27 mm
Z = 2

Data collection

Bruker APEXII DUO 4K KappaCCD diffractometer 3839 independent reflections
graphite 3771 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1 Rint = 0.020
φ and ω scans θmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −6→6
Tmin = 0.910, Tmax = 0.941 k = −17→17
10609 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.0965P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3839 reflections Δρmax = 0.31 e Å3
201 parameters Δρmin = −0.20 e Å3
1 restraint Absolute structure: Flack (1983), 1824 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.04 (4)

Special details

Experimental. The intensity data was collected on a Bruker APEX Duo 4 K KappaCCD diffractometer using an exposure time of 10 s/frame. A total of 1490 frames were collected with a frame width of 0.5° covering up to θ = 28.36° with 99.8% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.97008 (5) 0.73210 (2) 0.55390 (2) 0.01758 (7)
O1 1.10976 (16) 0.64668 (6) 0.77149 (7) 0.01499 (16)
O2 0.67619 (16) 0.67526 (6) 0.89081 (8) 0.01858 (18)
O3 0.43919 (18) 0.61581 (8) 1.02918 (8) 0.0242 (2)
O4 0.82603 (16) 0.40209 (6) 0.72849 (8) 0.01964 (18)
O5 1.07925 (17) 0.28011 (7) 0.81406 (9) 0.02305 (19)
C1 1.1974 (2) 0.65826 (9) 0.65814 (10) 0.0151 (2)
H1 1.3636 0.6957 0.6713 0.018*
C2 1.2504 (2) 0.56087 (10) 0.60152 (11) 0.0181 (2)
H2 1.3308 0.5601 0.5299 0.022*
C3 1.1873 (2) 0.47589 (9) 0.64935 (12) 0.0193 (2)
H3 1.2388 0.4154 0.6158 0.023*
C4 1.0364 (2) 0.47220 (9) 0.75525 (12) 0.0167 (2)
H4 1.1499 0.4524 0.8302 0.02*
C5 0.9137 (2) 0.57276 (9) 0.77150 (10) 0.0153 (2)
H5 0.7744 0.5852 0.7033 0.018*
C6 1.0169 (2) 0.84785 (9) 0.63084 (11) 0.0169 (2)
C7 1.2088 (3) 0.91243 (10) 0.60335 (13) 0.0234 (3)
H7 1.313 0.8954 0.5427 0.028*
C8 1.2472 (3) 1.00164 (11) 0.66480 (14) 0.0282 (3)
H8 1.3785 1.0457 0.6463 0.034*
C9 1.0957 (3) 1.02695 (10) 0.75292 (14) 0.0264 (3)
H9 1.123 1.0882 0.7948 0.032*
C10 0.9041 (3) 0.96298 (11) 0.77997 (13) 0.0274 (3)
H10 0.7995 0.9805 0.8402 0.033*
C11 0.8644 (2) 0.87300 (10) 0.71901 (13) 0.0228 (3)
H11 0.7333 0.829 0.7378 0.027*
C12 0.8777 (2) 0.30606 (9) 0.76035 (11) 0.0163 (2)
C13 0.6527 (2) 0.24055 (10) 0.71904 (11) 0.0195 (2)
H13A 0.6456 0.2284 0.6322 0.029*
H13B 0.4933 0.2731 0.7354 0.029*
H13C 0.6719 0.1772 0.7624 0.029*
C14 0.8047 (2) 0.58030 (9) 0.88967 (11) 0.0196 (2)
H14A 0.681 0.5257 0.897 0.024*
H14B 0.9446 0.5758 0.958 0.024*
C15 0.4963 (2) 0.68315 (10) 0.96714 (11) 0.0192 (2)
C16 0.3881 (3) 0.78618 (10) 0.96492 (12) 0.0234 (3)
H16A 0.2147 0.7843 0.9892 0.035*
H16B 0.3795 0.8133 0.8831 0.035*
H16C 0.4993 0.8283 1.021 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02171 (13) 0.01391 (12) 0.01645 (12) 0.00008 (11) −0.00018 (9) −0.00028 (11)
O1 0.0158 (4) 0.0132 (4) 0.0160 (4) −0.0031 (3) 0.0023 (3) −0.0005 (3)
O2 0.0180 (4) 0.0171 (4) 0.0219 (4) 0.0008 (3) 0.0073 (3) 0.0004 (3)
O3 0.0226 (4) 0.0306 (5) 0.0202 (4) 0.0000 (4) 0.0058 (3) 0.0053 (4)
O4 0.0152 (4) 0.0108 (4) 0.0315 (5) −0.0018 (3) −0.0023 (3) 0.0026 (3)
O5 0.0170 (4) 0.0158 (4) 0.0359 (5) 0.0016 (3) 0.0017 (4) 0.0043 (4)
C1 0.0144 (5) 0.0133 (5) 0.0176 (5) 0.0004 (4) 0.0019 (4) −0.0003 (4)
C2 0.0163 (5) 0.0162 (5) 0.0224 (6) 0.0024 (4) 0.0045 (4) −0.0037 (5)
C3 0.0150 (5) 0.0155 (6) 0.0272 (6) 0.0016 (4) 0.0017 (5) −0.0048 (5)
C4 0.0138 (5) 0.0110 (5) 0.0246 (6) −0.0011 (4) −0.0002 (4) 0.0007 (4)
C5 0.0133 (5) 0.0129 (5) 0.0193 (5) −0.0018 (4) 0.0009 (4) 0.0004 (4)
C6 0.0195 (5) 0.0122 (5) 0.0179 (5) 0.0013 (4) −0.0019 (4) 0.0008 (4)
C7 0.0238 (6) 0.0216 (7) 0.0251 (6) −0.0026 (5) 0.0036 (5) 0.0000 (5)
C8 0.0287 (7) 0.0194 (6) 0.0356 (8) −0.0069 (5) 0.0003 (6) −0.0004 (5)
C9 0.0284 (7) 0.0155 (6) 0.0324 (7) 0.0036 (5) −0.0072 (5) −0.0040 (5)
C10 0.0278 (7) 0.0223 (6) 0.0320 (7) 0.0045 (5) 0.0039 (5) −0.0075 (5)
C11 0.0222 (6) 0.0174 (6) 0.0291 (7) 0.0003 (5) 0.0041 (5) −0.0014 (5)
C12 0.0170 (5) 0.0125 (5) 0.0207 (5) 0.0004 (4) 0.0078 (4) −0.0001 (4)
C13 0.0176 (5) 0.0154 (5) 0.0260 (5) −0.0024 (5) 0.0047 (4) −0.0003 (5)
C14 0.0187 (5) 0.0159 (6) 0.0252 (6) 0.0006 (4) 0.0064 (4) 0.0041 (5)
C15 0.0145 (5) 0.0276 (6) 0.0151 (5) −0.0006 (5) 0.0007 (4) −0.0026 (5)
C16 0.0234 (6) 0.0262 (7) 0.0210 (6) 0.0021 (5) 0.0044 (5) −0.0042 (5)

Geometric parameters (Å, °)

S1—C6 1.7824 (12) C6—C7 1.3921 (18)
S1—C1 1.8465 (12) C7—C8 1.386 (2)
O1—C1 1.4096 (13) C7—H7 0.95
O1—C5 1.4298 (13) C8—C9 1.383 (2)
O2—C15 1.3522 (14) C8—H8 0.95
O2—C14 1.4460 (14) C9—C10 1.384 (2)
O3—C15 1.2024 (16) C9—H9 0.95
O4—C12 1.3596 (14) C10—C11 1.3929 (19)
O4—C4 1.4527 (14) C10—H10 0.95
O5—C12 1.1974 (15) C11—H11 0.95
C1—C2 1.4975 (17) C12—C13 1.4967 (17)
C1—H1 1 C13—H13A 0.98
C2—C3 1.3228 (19) C13—H13B 0.98
C2—H2 0.95 C13—H13C 0.98
C3—C4 1.5046 (18) C14—H14A 0.99
C3—H3 0.95 C14—H14B 0.99
C4—C5 1.5199 (16) C15—C16 1.4980 (18)
C4—H4 1 C16—H16A 0.98
C5—C14 1.5069 (16) C16—H16B 0.98
C5—H5 1 C16—H16C 0.98
C6—C11 1.3864 (18)
C6—S1—C1 97.40 (5) C9—C8—H8 119.8
C1—O1—C5 113.11 (8) C7—C8—H8 119.8
C15—O2—C14 115.90 (9) C8—C9—C10 119.91 (13)
C12—O4—C4 116.37 (9) C8—C9—H9 120
O1—C1—C2 112.43 (9) C10—C9—H9 120
O1—C1—S1 111.69 (8) C9—C10—C11 120.14 (13)
C2—C1—S1 110.14 (8) C9—C10—H10 119.9
O1—C1—H1 107.4 C11—C10—H10 119.9
C2—C1—H1 107.4 C6—C11—C10 119.78 (12)
S1—C1—H1 107.4 C6—C11—H11 120.1
C3—C2—C1 121.21 (11) C10—C11—H11 120.1
C3—C2—H2 119.4 O5—C12—O4 122.84 (11)
C1—C2—H2 119.4 O5—C12—C13 126.21 (11)
C2—C3—C4 121.95 (11) O4—C12—C13 110.94 (10)
C2—C3—H3 119 C12—C13—H13A 109.5
C4—C3—H3 119 C12—C13—H13B 109.5
O4—C4—C3 108.61 (10) H13A—C13—H13B 109.5
O4—C4—C5 106.45 (9) C12—C13—H13C 109.5
C3—C4—C5 109.66 (10) H13A—C13—H13C 109.5
O4—C4—H4 110.7 H13B—C13—H13C 109.5
C3—C4—H4 110.7 O2—C14—C5 107.18 (9)
C5—C4—H4 110.7 O2—C14—H14A 110.3
O1—C5—C14 107.73 (9) C5—C14—H14A 110.3
O1—C5—C4 107.84 (9) O2—C14—H14B 110.3
C14—C5—C4 112.17 (10) C5—C14—H14B 110.3
O1—C5—H5 109.7 H14A—C14—H14B 108.5
C14—C5—H5 109.7 O3—C15—O2 123.27 (12)
C4—C5—H5 109.7 O3—C15—C16 125.96 (11)
C11—C6—C7 120.04 (12) O2—C15—C16 110.75 (11)
C11—C6—S1 120.02 (9) C15—C16—H16A 109.5
C7—C6—S1 119.93 (10) C15—C16—H16B 109.5
C8—C7—C6 119.72 (13) H16A—C16—H16B 109.5
C8—C7—H7 120.1 C15—C16—H16C 109.5
C6—C7—H7 120.1 H16A—C16—H16C 109.5
C9—C8—C7 120.41 (13) H16B—C16—H16C 109.5
C5—O1—C1—C2 −46.21 (12) C1—S1—C6—C11 −90.11 (10)
C5—O1—C1—S1 78.20 (10) C1—S1—C6—C7 89.10 (11)
C6—S1—C1—O1 68.09 (9) C11—C6—C7—C8 0.25 (19)
C6—S1—C1—C2 −166.23 (8) S1—C6—C7—C8 −178.96 (11)
O1—C1—C2—C3 7.92 (16) C6—C7—C8—C9 −0.2 (2)
S1—C1—C2—C3 −117.34 (12) C7—C8—C9—C10 −0.1 (2)
C1—C2—C3—C4 6.16 (19) C8—C9—C10—C11 0.3 (2)
C12—O4—C4—C3 89.25 (12) C7—C6—C11—C10 −0.06 (19)
C12—O4—C4—C5 −152.74 (10) S1—C6—C11—C10 179.15 (10)
C2—C3—C4—O4 131.42 (12) C9—C10—C11—C6 −0.2 (2)
C2—C3—C4—C5 15.47 (16) C4—O4—C12—O5 4.37 (17)
C1—O1—C5—C14 −170.14 (9) C4—O4—C12—C13 −175.44 (10)
C1—O1—C5—C4 68.59 (11) C15—O2—C14—C5 158.61 (10)
O4—C4—C5—O1 −167.47 (9) O1—C5—C14—O2 65.92 (11)
C3—C4—C5—O1 −50.15 (12) C4—C5—C14—O2 −175.56 (9)
O4—C4—C5—C14 74.07 (12) C14—O2—C15—O3 −1.62 (17)
C3—C4—C5—C14 −168.62 (10) C14—O2—C15—C16 176.90 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···S1 1 2.86 3.2848 (12) 106
C13—H13B···O5i 0.98 2.44 3.3506 (15) 154

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2451).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bracherro, M. P., Cabrera, E. F., Gomez, G. M. & Peredes, L. M. R. (1998). Carbohydr. Res. 308, 181–190.
  4. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Breton, G. W. J. (1997). J. Org. Chem. 62, 8952–8954
  6. Bruker (2008). SADABS, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Chambers, D. J., Evans, G. R. & Fairbanks, A. (2005). Tetrahedron Asymmetry, 16, 45–55.
  9. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  10. Danishefsky, S. J. & Bilodeau, M. T. (1996). Angew. Chem. Int. Ed. Engl. 35, 1380–1419.
  11. Domon, D., Fujiwara, K., Ohtaniuchi, Y., Takezawa, A., Takeda, S., Kawasaki, H., Murai, A., Kawai, H. & Suzuki, T. (2005). Tetrahedron Lett. 46, 8279–8283.
  12. Dorgan, B. J. & Jackson, R. F. W. (1996). Synlett, pp. 859–861.
  13. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  14. Ferrier, R. J. & Prasad, N. J. (1969). J. Chem. Soc. pp. 570–575.
  15. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  16. Griffith, D. A. & Danishefsky, S. J. (1991). J. Am. Chem. Soc. 113, 5863–5864.
  17. Halcomb, R. H., Boyer, S. H., Wittman, M. D., Olson, S. H., Denhart, D. J., Liu, K. K. C. & Danishefsky, S. J. (1995). J. Am. Chem. Soc. 117, 5720–5749.
  18. Kinfe, H. H., Mebrahtu, F. M. & Sithole, K. (2011). Carbohydr. Res. doi:10.1016/j.carres.2011.08.023. [DOI] [PubMed]
  19. López, J. C., Gómez, A. M., Valverde, S. & Fraser-Reid, B. (1995). J. Org. Chem. 60, 3851–3858.
  20. Minuth, T. & Boysen, M. M. K. (2009). Org. Lett. 11, 4212–4215. [DOI] [PubMed]
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Yadav, J. S., Reddy, B. V. S. & Chand, P. K. (2001). Tetrahedron Lett. 42, 4057–4059.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040165/fj2451sup1.cif

e-67-o2840-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040165/fj2451Isup2.hkl

e-67-o2840-Isup2.hkl (184.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES