Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2845. doi: 10.1107/S1600536811039894

2-(4-Methyl­phen­yl)-1-(phenyl­sulfon­yl)propan-2-ol

Bao-Jun Shi a, Liang-Zhu Huang b, You-Qiang Li b, Chang-Mei Si b, Zhen-Ting Du b,*
PMCID: PMC3247583  PMID: 22219888

Abstract

The title compound, C16H18O3S, features a U-shape mol­ecular structure with a dihedral angle between the terminal benzene rings of 20.8 (1)°. An intra­molecular O—H⋯O hydrogen bond helps to stabilize the mol­ecular structure. Inter­molecular classical O—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the use of organic sulfones as inter­mediates in organic synthesis, see: Consiglio et al. (1983); Wenkert et al. (1983); Trost (1991). For related structures, see: Gu et al. (2004); Garst et al. (2006); Ding et al., (2009); Groszek et al. (2006); Shi et al. (2011). For background to our program to synthesis new herbicide derivatives, see: Du et al. (2011).graphic file with name e-67-o2845-scheme1.jpg

Experimental

Crystal data

  • C16H18O3S

  • M r = 290.36

  • Orthorhombic, Inline graphic

  • a = 15.6696 (14) Å

  • b = 11.7501 (11) Å

  • c = 15.9042 (16) Å

  • V = 2928.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.38 × 0.29 × 0.21 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.919, T max = 0.954

  • 13679 measured reflections

  • 2578 independent reflections

  • 1590 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.141

  • S = 1.08

  • 2578 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039894/xu5336sup1.cif

e-67-o2845-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039894/xu5336Isup2.hkl

e-67-o2845-Isup2.hkl (126.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039894/xu5336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 2.14 2.848 (3) 144
O1—H1⋯O3i 0.82 2.45 3.103 (3) 137
C15—H15⋯O2ii 0.93 2.48 3.403 (5) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (No. QN2009048) and the opening project of Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (BRTD1004) as well as the National Natural Science Foundation of China (20802058) is greatly appreciated.

supplementary crystallographic information

Comment

Organic sulfones have been proven as good intermediates in organic synthesis (Consiglio et al., 1983; Wenkert et al., 1983; Trost 1991). As a result of our program of synthesis of new herbcide derivatives (Du et al., 2011), we obtained a intermediate compound C16H18O3S (I) in the synthesis and structure are reported here. There are two benzene rings in the title compound and they exhibit face-to-face conformation. The dihedral angle between the two benzene rings is 20.8 (1)°. The molecules of I are crystalized in Pbca space group which differs from that of 2-methoxy-4-methyl-1-(1-(phenylsulfonyl)propan-2-yl)benzene (P2~1~/c, Shi et al., 2011). In the crystal structure there is an intramolecular C—H···O hydrogen-bonding interaction (Table 1) which is benefical to the stabilization of the packing, and whose symmetry code is defined as -x, -y + 1, -z + 1.

Experimental

A mixture of 2-methyl-2-(p-tolyl)oxirane (148 mg, 1 mmol) and sodium benzenesulfinate (246 mg, 1.5 mmol) in dry DMF (3 ml) was stirred over night at 80°C. When the reaction was completed, 2 ml water was added to the reaction mixture to quench reaction, then was extracted with ethyl acetate (20 ml × 3). The ethyl acetate layers were combined and washed by 20 ml water, then 15 ml saturated sodium chloride and dried over anhydrous sodium sulfate. The solution was evapourated and the residue was separated on silica gel column chromatography with a gradient of petroleum ether and ethyl acetate as eluent to yield 348 mg the title compound. The compound was then dissolved in methanol, and colorless crystals were formed on slow evaporation at room temperature over one week.

Refinement

H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding atoms with Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The molecular packing of (I) viewed along the a axis, with hydrogen bonds shown as dashed lines.

Crystal data

C16H18O3S Dx = 1.317 Mg m3
Mr = 290.36 Melting point: 392 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2803 reflections
a = 15.6696 (14) Å θ = 2.5–23.6°
b = 11.7501 (11) Å µ = 0.23 mm1
c = 15.9042 (16) Å T = 298 K
V = 2928.3 (5) Å3 Block, colorless
Z = 8 0.38 × 0.29 × 0.21 mm
F(000) = 1232

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2578 independent reflections
Radiation source: fine-focus sealed tube 1590 reflections with I > 2σ(I)
graphite Rint = 0.055
φ and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→18
Tmin = 0.919, Tmax = 0.954 k = −7→13
13679 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.054P)2 + 2.2452P] where P = (Fo2 + 2Fc2)/3
2578 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.16491 (15) 0.5125 (2) 0.51682 (13) 0.0541 (7)
H1 0.1135 0.5015 0.5118 0.081*
O2 0.05450 (17) 0.2052 (2) 0.41610 (15) 0.0608 (7)
O3 0.01924 (14) 0.4061 (2) 0.44403 (15) 0.0607 (7)
S1 0.07045 (5) 0.32361 (7) 0.40083 (5) 0.0424 (3)
C1 0.17920 (19) 0.3470 (3) 0.4275 (2) 0.0441 (8)
H1A 0.1918 0.3022 0.4772 0.053*
H1B 0.2140 0.3171 0.3822 0.053*
C2 0.2081 (2) 0.4699 (3) 0.44465 (19) 0.0428 (8)
C3 0.19648 (19) 0.5463 (3) 0.36837 (19) 0.0376 (7)
C4 0.2366 (2) 0.5198 (3) 0.2928 (2) 0.0446 (8)
H4 0.2691 0.4537 0.2892 0.053*
C5 0.2294 (2) 0.5888 (3) 0.2233 (2) 0.0473 (9)
H5 0.2564 0.5680 0.1735 0.057*
C6 0.1827 (2) 0.6890 (3) 0.2262 (2) 0.0453 (8)
C7 0.1425 (2) 0.7151 (3) 0.3009 (2) 0.0477 (9)
H7 0.1101 0.7812 0.3043 0.057*
C8 0.1492 (2) 0.6455 (3) 0.3710 (2) 0.0448 (8)
H8 0.1215 0.6659 0.4205 0.054*
C9 0.3024 (2) 0.4680 (3) 0.4693 (2) 0.0586 (10)
H9A 0.3211 0.5440 0.4815 0.088*
H9B 0.3354 0.4375 0.4238 0.088*
H9C 0.3097 0.4212 0.5183 0.088*
C10 0.1751 (3) 0.7661 (3) 0.1507 (2) 0.0644 (11)
H10A 0.1555 0.8397 0.1684 0.097*
H10B 0.1352 0.7341 0.1115 0.097*
H10C 0.2299 0.7735 0.1243 0.097*
C11 0.06017 (19) 0.3471 (3) 0.2917 (2) 0.0402 (8)
C12 0.0856 (2) 0.2625 (3) 0.2375 (2) 0.0557 (10)
H12 0.1085 0.1950 0.2581 0.067*
C13 0.0767 (3) 0.2792 (4) 0.1524 (3) 0.0721 (13)
H13 0.0935 0.2224 0.1151 0.086*
C14 0.0435 (3) 0.3785 (5) 0.1222 (3) 0.0742 (13)
H14 0.0378 0.3889 0.0645 0.089*
C15 0.0186 (3) 0.4630 (4) 0.1765 (3) 0.0698 (12)
H15 −0.0036 0.5307 0.1555 0.084*
C16 0.0264 (2) 0.4476 (3) 0.2624 (2) 0.0546 (9)
H16 0.0092 0.5042 0.2996 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0580 (15) 0.0663 (17) 0.0380 (13) −0.0058 (13) 0.0003 (11) −0.0134 (12)
O2 0.0805 (18) 0.0463 (15) 0.0555 (15) −0.0190 (13) −0.0042 (13) 0.0066 (12)
O3 0.0468 (14) 0.0772 (18) 0.0582 (15) 0.0029 (13) 0.0069 (12) −0.0265 (14)
S1 0.0442 (5) 0.0438 (5) 0.0392 (5) −0.0035 (4) 0.0028 (4) −0.0042 (4)
C1 0.0426 (19) 0.049 (2) 0.0409 (18) 0.0050 (16) 0.0008 (15) 0.0056 (16)
C2 0.0438 (19) 0.046 (2) 0.0384 (18) −0.0014 (16) 0.0013 (14) −0.0037 (16)
C3 0.0355 (17) 0.0355 (18) 0.0417 (18) −0.0049 (14) −0.0042 (14) −0.0056 (15)
C4 0.0432 (19) 0.042 (2) 0.0488 (19) 0.0049 (16) 0.0036 (15) −0.0011 (17)
C5 0.048 (2) 0.049 (2) 0.045 (2) −0.0008 (17) 0.0041 (16) 0.0005 (17)
C6 0.0387 (18) 0.046 (2) 0.051 (2) −0.0055 (16) −0.0084 (16) 0.0015 (17)
C7 0.0421 (19) 0.039 (2) 0.062 (2) 0.0009 (16) −0.0043 (17) −0.0049 (18)
C8 0.0430 (18) 0.044 (2) 0.047 (2) −0.0028 (17) 0.0003 (15) −0.0084 (17)
C9 0.048 (2) 0.071 (3) 0.057 (2) −0.0061 (19) −0.0154 (17) 0.007 (2)
C10 0.067 (3) 0.066 (3) 0.060 (2) 0.002 (2) −0.006 (2) 0.012 (2)
C11 0.0367 (17) 0.042 (2) 0.0421 (18) −0.0008 (15) −0.0010 (14) 0.0012 (15)
C12 0.057 (2) 0.063 (2) 0.047 (2) 0.0100 (19) 0.0081 (18) −0.0064 (19)
C13 0.063 (3) 0.106 (4) 0.048 (2) 0.003 (3) 0.011 (2) −0.016 (3)
C14 0.064 (3) 0.110 (4) 0.048 (2) −0.021 (3) −0.002 (2) 0.020 (3)
C15 0.065 (3) 0.068 (3) 0.077 (3) −0.020 (2) −0.025 (2) 0.030 (3)
C16 0.052 (2) 0.044 (2) 0.068 (3) −0.0073 (18) −0.0150 (19) 0.0010 (19)

Geometric parameters (Å, °)

O1—C2 1.424 (4) C7—H7 0.9300
O1—H1 0.8200 C8—H8 0.9300
O2—S1 1.435 (2) C9—H9A 0.9600
O3—S1 1.433 (2) C9—H9B 0.9600
S1—C11 1.764 (3) C9—H9C 0.9600
S1—C1 1.778 (3) C10—H10A 0.9600
C1—C2 1.538 (4) C10—H10B 0.9600
C1—H1A 0.9700 C10—H10C 0.9600
C1—H1B 0.9700 C11—C12 1.375 (5)
C2—C3 1.520 (4) C11—C16 1.376 (5)
C2—C9 1.528 (4) C12—C13 1.375 (5)
C3—C8 1.382 (4) C12—H12 0.9300
C3—C4 1.392 (4) C13—C14 1.365 (6)
C4—C5 1.375 (4) C13—H13 0.9300
C4—H4 0.9300 C14—C15 1.373 (6)
C5—C6 1.387 (5) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.384 (5)
C6—C7 1.378 (5) C15—H15 0.9300
C6—C10 1.509 (5) C16—H16 0.9300
C7—C8 1.387 (5)
C2—O1—H1 109.5 C3—C8—C7 120.9 (3)
O3—S1—O2 118.50 (16) C3—C8—H8 119.5
O3—S1—C11 108.34 (15) C7—C8—H8 119.5
O2—S1—C11 107.58 (15) C2—C9—H9A 109.5
O3—S1—C1 108.52 (15) C2—C9—H9B 109.5
O2—S1—C1 106.05 (15) H9A—C9—H9B 109.5
C11—S1—C1 107.35 (15) C2—C9—H9C 109.5
C2—C1—S1 118.0 (2) H9A—C9—H9C 109.5
C2—C1—H1A 107.8 H9B—C9—H9C 109.5
S1—C1—H1A 107.8 C6—C10—H10A 109.5
C2—C1—H1B 107.8 C6—C10—H10B 109.5
S1—C1—H1B 107.8 H10A—C10—H10B 109.5
H1A—C1—H1B 107.1 C6—C10—H10C 109.5
O1—C2—C3 112.3 (3) H10A—C10—H10C 109.5
O1—C2—C9 104.9 (3) H10B—C10—H10C 109.5
C3—C2—C9 109.2 (3) C12—C11—C16 121.3 (3)
O1—C2—C1 109.5 (3) C12—C11—S1 118.5 (3)
C3—C2—C1 112.2 (3) C16—C11—S1 120.2 (3)
C9—C2—C1 108.4 (3) C11—C12—C13 119.0 (4)
C8—C3—C4 117.2 (3) C11—C12—H12 120.5
C8—C3—C2 122.6 (3) C13—C12—H12 120.5
C4—C3—C2 120.2 (3) C14—C13—C12 120.5 (4)
C5—C4—C3 121.6 (3) C14—C13—H13 119.8
C5—C4—H4 119.2 C12—C13—H13 119.8
C3—C4—H4 119.2 C13—C14—C15 120.3 (4)
C4—C5—C6 121.1 (3) C13—C14—H14 119.8
C4—C5—H5 119.4 C15—C14—H14 119.8
C6—C5—H5 119.4 C14—C15—C16 120.1 (4)
C7—C6—C5 117.3 (3) C14—C15—H15 119.9
C7—C6—C10 121.1 (3) C16—C15—H15 119.9
C5—C6—C10 121.6 (3) C11—C16—C15 118.7 (4)
C6—C7—C8 121.8 (3) C11—C16—H16 120.6
C6—C7—H7 119.1 C15—C16—H16 120.6
C8—C7—H7 119.1
O3—S1—C1—C2 −32.7 (3) C10—C6—C7—C8 −179.6 (3)
O2—S1—C1—C2 −161.1 (2) C4—C3—C8—C7 0.0 (5)
C11—S1—C1—C2 84.2 (3) C2—C3—C8—C7 177.7 (3)
S1—C1—C2—O1 64.0 (3) C6—C7—C8—C3 −0.3 (5)
S1—C1—C2—C3 −61.4 (3) O3—S1—C11—C12 −163.9 (3)
S1—C1—C2—C9 177.9 (2) O2—S1—C11—C12 −34.7 (3)
O1—C2—C3—C8 0.2 (4) C1—S1—C11—C12 79.1 (3)
C9—C2—C3—C8 −115.7 (3) O3—S1—C11—C16 15.4 (3)
C1—C2—C3—C8 124.0 (3) O2—S1—C11—C16 144.6 (3)
O1—C2—C3—C4 177.9 (3) C1—S1—C11—C16 −101.7 (3)
C9—C2—C3—C4 61.9 (4) C16—C11—C12—C13 −0.2 (5)
C1—C2—C3—C4 −58.3 (4) S1—C11—C12—C13 179.0 (3)
C8—C3—C4—C5 −0.3 (5) C11—C12—C13—C14 0.3 (6)
C2—C3—C4—C5 −178.1 (3) C12—C13—C14—C15 0.0 (6)
C3—C4—C5—C6 1.0 (5) C13—C14—C15—C16 −0.5 (6)
C4—C5—C6—C7 −1.2 (5) C12—C11—C16—C15 −0.2 (5)
C4—C5—C6—C10 179.3 (3) S1—C11—C16—C15 −179.5 (3)
C5—C6—C7—C8 0.9 (5) C14—C15—C16—C11 0.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3 0.82 2.14 2.848 (3) 144
O1—H1···O3i 0.82 2.45 3.103 (3) 137
C15—H15···O2ii 0.93 2.48 3.403 (5) 173

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5336).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Consiglio, G., Morandini, F. & Piccolo, O. (1983). Chem. Commun. pp. 112–114.
  3. Ding, Z.-H., Yang, J., Wang, T., Shen, S.-X. & Zhang, Y.-W. (2009). Chem. Commun. pp. 571–573. [DOI] [PubMed]
  4. Du, Z.-T., Wang, Y., Ma, W.-L., Lv, D. & Yu, H.-R. (2011). Nat. Prod. Commun. 6, 167–169. [PubMed]
  5. Garst, M. E., Dolby, L. J., Esfandiari, S., Okrent, R. A. & Avey, A. A. (2006). J. Org. Chem. 71, 553–556. [DOI] [PubMed]
  6. Groszek, G., Blazej, S., Brud, A., Swierczynski, D. & Lemek, T. (2006). Tetrahedron, 62, 2622–2630.
  7. Gu, J.-M., Zhang, Y.-C. & Hu, X.-R. (2004). Acta Cryst. E60, o1115–o1116.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shi, B.-J., Ding, L.-C., Chen, G. & Du, Z.-T. (2011). Acta Cryst. E67, o2589. [DOI] [PMC free article] [PubMed]
  11. Trost, B. M. (1991). Comprehensive Organic Synthesis, Vol 3. New York: Pergamon Press.
  12. Wenkert, E., Fernandes, J. B., Michelotti, E. L. & Swindell, C. S. (1983). Synthesis, pp. 701–703.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039894/xu5336sup1.cif

e-67-o2845-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039894/xu5336Isup2.hkl

e-67-o2845-Isup2.hkl (126.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039894/xu5336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES