Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2847. doi: 10.1107/S1600536811039857

N′-(4-Chloro­benzyl­idene)-2-[4-(methyl­sulfan­yl)phen­yl]acetohydrazide

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, V Sumangala b, D Jagadeesh Prasad b, Boja Poojary b
PMCID: PMC3247585  PMID: 22219890

Abstract

In the title compound, C16H15ClN2OS, the hydrazine group is twisted slightly: the C—N—N—C torsion angle is 175.46 (13)°. The dihedral angle between the two terminal aromatic rings is 87.01 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) loops. The dimers are further linked by weak C—H⋯π inter­actions.

Related literature

For further details of aroyl­hydro­zones, see: Li & Qu (2011); Zhang (2011); Fan et al. (2010). Ajani et al. (2010); Avaji et al. (2009); Rasras et al. (2010). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-o2847-scheme1.jpg

Experimental

Crystal data

  • C16H15ClN2OS

  • M r = 318.81

  • Monoclinic, Inline graphic

  • a = 17.0923 (13) Å

  • b = 9.6719 (7) Å

  • c = 9.5592 (7) Å

  • β = 92.399 (1)°

  • V = 1578.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.91 × 0.49 × 0.09 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.728, T max = 0.967

  • 17083 measured reflections

  • 4748 independent reflections

  • 3306 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.122

  • S = 1.04

  • 4748 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039857/hb6422sup1.cif

e-67-o2847-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039857/hb6422Isup2.hkl

e-67-o2847-Isup2.hkl (227.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039857/hb6422Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.95 2.03 2.9784 (17) 176
C14—H14ACg1ii 0.93 2.89 3.7627 (17) 156
C5—H5ACg2iii 0.93 2.98 3.4638 (17) 114

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Large number of aroylhydrozones have been synthesized in the recent years (Li & Qu, 2011; Zhang, 2011; Fan et al., 2010) which can serve as intermediates in synthesizing biologically active compounds (Ajani et al., 2010; Avaji et al., 2009; Rasras et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The hydrazine group is twisted slightly, with C7-N1-N2-C8, N1-N2-C8-C9 and N2-N1-C7-C6 torsion angles of 175.46 (13)°, 5.6 (2)° and -177.96 (12)°, respectively. The dihedral angle between the two terminal (C1–C6/C10–C15) phenyl rings is 87.01 (8)°.

In the crystal structure, (Fig. 2), centrosymmetrically related molecules are linked into dimers via pairs of intermolecular N2—H1N2···O1 (Table 1) hydrogen bonds, generating R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by C—H···π interactions involving the centroids of the C1–C6 (Cg1) and C10–C15 (Cg2) rings.

Experimental

An equimolar mixture of 2-(4-methylsulfanylphenyl)acetohydrazide and 4-chlorobenzaldehyde was refluxed for four hours in the presence of few drops of acid catalyst and ethanol as solvent.The compound obtained was filtered, washed, dried and recrystalised from ethanol to yield colourless plates.

Refinement

All hydrogen atoms were positioned geometrically [N–H = 0.9458 Å and C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.

Crystal data

C16H15ClN2OS F(000) = 664
Mr = 318.81 Dx = 1.341 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4828 reflections
a = 17.0923 (13) Å θ = 3.0–29.5°
b = 9.6719 (7) Å µ = 0.37 mm1
c = 9.5592 (7) Å T = 296 K
β = 92.399 (1)° Plate, colourless
V = 1578.9 (2) Å3 0.91 × 0.49 × 0.09 mm
Z = 4

Data collection

Bruker APEXII DUO CCD diffractometer 4748 independent reflections
Radiation source: fine-focus sealed tube 3306 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 30.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −24→24
Tmin = 0.728, Tmax = 0.967 k = −13→13
17083 measured reflections l = −9→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3224P] where P = (Fo2 + 2Fc2)/3
4748 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.89531 (3) 0.48335 (6) 0.00009 (6) 0.0873 (2)
S1 0.08573 (3) 0.40633 (6) 0.47773 (6) 0.07612 (17)
O1 0.42041 (6) 0.12422 (11) 0.50622 (11) 0.0523 (3)
N1 0.57757 (7) 0.23664 (12) 0.31358 (13) 0.0471 (3)
N2 0.52912 (7) 0.15328 (13) 0.38944 (14) 0.0509 (3)
H1N2 0.5458 0.0642 0.4186 0.061*
C1 0.68893 (8) 0.38659 (15) 0.15181 (15) 0.0457 (3)
H1A 0.6393 0.4255 0.1543 0.055*
C2 0.74751 (9) 0.45572 (16) 0.08466 (16) 0.0525 (3)
H2A 0.7375 0.5404 0.0414 0.063*
C3 0.82114 (8) 0.39671 (17) 0.08305 (17) 0.0534 (4)
C4 0.83721 (9) 0.27056 (18) 0.14429 (18) 0.0574 (4)
H4A 0.8869 0.2318 0.1409 0.069*
C5 0.77820 (8) 0.20250 (16) 0.21090 (17) 0.0509 (3)
H5A 0.7885 0.1174 0.2531 0.061*
C6 0.70357 (7) 0.25944 (14) 0.21570 (14) 0.0409 (3)
C7 0.64405 (8) 0.18409 (14) 0.29029 (15) 0.0448 (3)
H7A 0.6551 0.0949 0.3217 0.054*
C8 0.45912 (7) 0.19818 (14) 0.43038 (15) 0.0429 (3)
C9 0.43186 (8) 0.33897 (16) 0.37856 (19) 0.0542 (4)
H9A 0.4615 0.4101 0.4289 0.065*
H9B 0.4423 0.3476 0.2800 0.065*
C10 0.34576 (8) 0.36138 (14) 0.39812 (16) 0.0468 (3)
C11 0.29124 (9) 0.30706 (16) 0.30280 (18) 0.0566 (4)
H11A 0.3085 0.2621 0.2238 0.068*
C12 0.21138 (9) 0.31748 (17) 0.32120 (19) 0.0570 (4)
H12A 0.1759 0.2789 0.2559 0.068*
C13 0.18467 (8) 0.38616 (16) 0.43821 (17) 0.0508 (3)
C14 0.23916 (9) 0.44558 (18) 0.53125 (16) 0.0557 (4)
H14A 0.2221 0.4946 0.6079 0.067*
C15 0.31841 (9) 0.43303 (17) 0.51179 (16) 0.0527 (3)
H15A 0.3540 0.4732 0.5759 0.063*
C16 0.03229 (11) 0.3267 (3) 0.3351 (3) 0.0869 (6)
H16A −0.0227 0.3311 0.3511 0.130*
H16B 0.0480 0.2318 0.3277 0.130*
H16C 0.0428 0.3744 0.2499 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0641 (3) 0.1044 (4) 0.0953 (4) −0.0326 (3) 0.0244 (3) 0.0087 (3)
S1 0.0464 (2) 0.0932 (4) 0.0895 (4) 0.0137 (2) 0.0113 (2) −0.0114 (3)
O1 0.0428 (5) 0.0508 (6) 0.0643 (7) −0.0037 (4) 0.0130 (5) 0.0114 (5)
N1 0.0419 (6) 0.0468 (6) 0.0534 (7) −0.0020 (5) 0.0129 (5) 0.0063 (5)
N2 0.0442 (6) 0.0456 (6) 0.0642 (8) 0.0015 (5) 0.0160 (5) 0.0132 (6)
C1 0.0417 (6) 0.0492 (8) 0.0466 (7) 0.0028 (5) 0.0053 (5) 0.0008 (6)
C2 0.0561 (8) 0.0507 (8) 0.0511 (8) −0.0055 (7) 0.0068 (6) 0.0041 (6)
C3 0.0450 (7) 0.0645 (9) 0.0513 (8) −0.0145 (7) 0.0091 (6) −0.0050 (7)
C4 0.0384 (7) 0.0679 (10) 0.0665 (10) 0.0024 (7) 0.0094 (6) −0.0055 (8)
C5 0.0453 (7) 0.0493 (8) 0.0587 (9) 0.0054 (6) 0.0099 (6) 0.0006 (7)
C6 0.0396 (6) 0.0431 (7) 0.0402 (7) −0.0001 (5) 0.0061 (5) −0.0034 (5)
C7 0.0445 (7) 0.0419 (7) 0.0486 (8) 0.0006 (5) 0.0076 (6) 0.0021 (6)
C8 0.0384 (6) 0.0435 (7) 0.0472 (7) −0.0051 (5) 0.0064 (5) 0.0006 (6)
C9 0.0457 (7) 0.0458 (8) 0.0722 (10) −0.0010 (6) 0.0166 (7) 0.0080 (7)
C10 0.0454 (7) 0.0394 (7) 0.0563 (8) 0.0023 (5) 0.0108 (6) 0.0070 (6)
C11 0.0557 (8) 0.0532 (8) 0.0619 (10) 0.0023 (7) 0.0143 (7) −0.0126 (7)
C12 0.0505 (8) 0.0545 (9) 0.0659 (10) 0.0017 (7) 0.0031 (7) −0.0119 (7)
C13 0.0457 (7) 0.0502 (8) 0.0569 (9) 0.0093 (6) 0.0067 (6) 0.0044 (7)
C14 0.0541 (8) 0.0666 (10) 0.0468 (8) 0.0132 (7) 0.0065 (6) −0.0047 (7)
C15 0.0504 (8) 0.0575 (9) 0.0501 (8) 0.0046 (6) 0.0007 (6) −0.0003 (7)
C16 0.0516 (10) 0.1089 (18) 0.0998 (16) −0.0040 (10) −0.0003 (10) −0.0019 (13)

Geometric parameters (Å, °)

Cl1—C3 1.7386 (15) C7—H7A 0.9300
S1—C13 1.7590 (15) C8—C9 1.516 (2)
S1—C16 1.783 (2) C9—C10 1.5069 (19)
O1—C8 1.2310 (16) C9—H9A 0.9700
N1—C7 1.2728 (17) C9—H9B 0.9700
N1—N2 1.3828 (15) C10—C11 1.380 (2)
N2—C8 1.3462 (17) C10—C15 1.386 (2)
N2—H1N2 0.9458 C11—C12 1.387 (2)
C1—C2 1.3840 (19) C11—H11A 0.9300
C1—C6 1.391 (2) C12—C13 1.394 (2)
C1—H1A 0.9300 C12—H12A 0.9300
C2—C3 1.383 (2) C13—C14 1.385 (2)
C2—H2A 0.9300 C14—C15 1.380 (2)
C3—C4 1.376 (2) C14—H14A 0.9300
C4—C5 1.382 (2) C15—H15A 0.9300
C4—H4A 0.9300 C16—H16A 0.9600
C5—C6 1.3920 (18) C16—H16B 0.9600
C5—H5A 0.9300 C16—H16C 0.9600
C6—C7 1.4612 (18)
C13—S1—C16 104.73 (9) C10—C9—H9A 109.2
C7—N1—N2 114.68 (12) C8—C9—H9A 109.2
C8—N2—N1 121.57 (12) C10—C9—H9B 109.2
C8—N2—H1N2 117.9 C8—C9—H9B 109.2
N1—N2—H1N2 120.4 H9A—C9—H9B 107.9
C2—C1—C6 120.69 (13) C11—C10—C15 117.86 (13)
C2—C1—H1A 119.7 C11—C10—C9 119.97 (14)
C6—C1—H1A 119.7 C15—C10—C9 122.16 (14)
C3—C2—C1 118.83 (14) C10—C11—C12 121.98 (14)
C3—C2—H2A 120.6 C10—C11—H11A 119.0
C1—C2—H2A 120.6 C12—C11—H11A 119.0
C4—C3—C2 121.80 (14) C11—C12—C13 119.56 (15)
C4—C3—Cl1 119.02 (12) C11—C12—H12A 120.2
C2—C3—Cl1 119.18 (13) C13—C12—H12A 120.2
C3—C4—C5 118.81 (14) C14—C13—C12 118.61 (14)
C3—C4—H4A 120.6 C14—C13—S1 116.28 (12)
C5—C4—H4A 120.6 C12—C13—S1 125.11 (13)
C4—C5—C6 120.94 (14) C15—C14—C13 120.94 (14)
C4—C5—H5A 119.5 C15—C14—H14A 119.5
C6—C5—H5A 119.5 C13—C14—H14A 119.5
C1—C6—C5 118.92 (13) C14—C15—C10 120.97 (15)
C1—C6—C7 122.62 (12) C14—C15—H15A 119.5
C5—C6—C7 118.45 (13) C10—C15—H15A 119.5
N1—C7—C6 122.07 (13) S1—C16—H16A 109.5
N1—C7—H7A 119.0 S1—C16—H16B 109.5
C6—C7—H7A 119.0 H16A—C16—H16B 109.5
O1—C8—N2 119.34 (13) S1—C16—H16C 109.5
O1—C8—C9 123.30 (12) H16A—C16—H16C 109.5
N2—C8—C9 117.36 (12) H16B—C16—H16C 109.5
C10—C9—C8 112.16 (11)
C7—N1—N2—C8 175.46 (13) O1—C8—C9—C10 −14.8 (2)
C6—C1—C2—C3 −0.5 (2) N2—C8—C9—C10 164.74 (14)
C1—C2—C3—C4 1.1 (2) C8—C9—C10—C11 −81.06 (19)
C1—C2—C3—Cl1 −179.53 (11) C8—C9—C10—C15 97.43 (17)
C2—C3—C4—C5 −1.0 (2) C15—C10—C11—C12 −2.7 (2)
Cl1—C3—C4—C5 179.58 (12) C9—C10—C11—C12 175.83 (15)
C3—C4—C5—C6 0.4 (2) C10—C11—C12—C13 0.8 (3)
C2—C1—C6—C5 −0.1 (2) C11—C12—C13—C14 1.7 (2)
C2—C1—C6—C7 178.68 (14) C11—C12—C13—S1 −179.14 (13)
C4—C5—C6—C1 0.1 (2) C16—S1—C13—C14 177.21 (14)
C4—C5—C6—C7 −178.68 (14) C16—S1—C13—C12 −1.93 (18)
N2—N1—C7—C6 −177.96 (12) C12—C13—C14—C15 −2.3 (2)
C1—C6—C7—N1 −7.3 (2) S1—C13—C14—C15 178.46 (13)
C5—C6—C7—N1 171.47 (14) C13—C14—C15—C10 0.4 (2)
N1—N2—C8—O1 −174.81 (13) C11—C10—C15—C14 2.1 (2)
N1—N2—C8—C9 5.6 (2) C9—C10—C15—C14 −176.42 (14)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.95 2.03 2.9784 (17) 176
C14—H14A···Cg1ii 0.93 2.89 3.7627 (17) 156
C5—H5A···Cg2iii 0.93 2.98 3.4638 (17) 114

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6422).

References

  1. Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem 18, 214–221. [DOI] [PubMed]
  2. Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem 44, 3552–3559. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fan, C. D., Su, H., Zhao, B. X., Zhanz, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem 45, 1438–1446. [DOI] [PubMed]
  6. Li, T.-Y. & Qu, Y.-G. (2011). Acta Cryst. E67, o330. [DOI] [PMC free article] [PubMed]
  7. Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem 45, 2307–2313. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Zhang, Z. (2011). Acta Cryst. E67, o301. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039857/hb6422sup1.cif

e-67-o2847-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039857/hb6422Isup2.hkl

e-67-o2847-Isup2.hkl (227.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039857/hb6422Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES