Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):o2849. doi: 10.1107/S1600536811039997

(E)-2-{[2-(2-Hy­droxy­ethyl­amino)­ethyl­imino]­meth­yl}phenol

Juan M Germán-Acacio a, Hugo Tlahuext a, Herbert Höpfl a,*
PMCID: PMC3247587  PMID: 22219892

Abstract

The asymmetric unit of the title compound, C11H16N2O2, contains two independent conformational isomers which show intra­molecular aromatic–imine O—H⋯N hydrogen bonds. In the crystal, neighboring mol­ecules are linked through inter­molecular aliphatic–aliphatic O—H⋯N, aliphatic–aromatic N—H⋯O and C—H⋯O inter­actions into hydrogen-bonded layers parallel to the ab plane.

Related literature

For crystal structures of metal complexes with this ligand, see: Haber et al. (2003); Kenar et al. (2001); Li et al. (1988); Rajendiran et al. (2007). For supra­molecular assemblies with structurally related ligands, see: Barba et al. (2000); Fujita et al. (2008); Höpfl (2002); Severin (2009). For the tautomerism of salicyl­idene­imines, see: Domínguez et al. (2011); Fujiwara et al. (2009); Ogawa et al. (1998); Rodríguez et al. (2007).graphic file with name e-67-o2849-scheme1.jpg

Experimental

Crystal data

  • C11H16N2O2

  • M r = 208.26

  • Orthorhombic, Inline graphic

  • a = 7.0047 (11) Å

  • b = 14.171 (2) Å

  • c = 21.681 (3) Å

  • V = 2152.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.45 × 0.08 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.786, T max = 0.994

  • 12054 measured reflections

  • 2677 independent reflections

  • 2311 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.115

  • S = 1.14

  • 2677 reflections

  • 289 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039997/pk2347sup1.cif

e-67-o2849-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039997/pk2347Isup2.hkl

e-67-o2849-Isup2.hkl (131.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039997/pk2347Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (2) 1.77 (2) 2.562 (3) 157 (3)
O2—H2⋯N32i 0.84 (1) 2.00 (1) 2.839 (3) 178 (4)
N2—H2A⋯O1i 0.86 (2) 2.27 (2) 3.106 (3) 165 (2)
O31—H31⋯N31 0.84 (2) 1.82 (2) 2.596 (3) 154 (3)
O32—H32⋯N2ii 0.84 (1) 2.00 (1) 2.795 (3) 158 (4)
N32—H32A⋯O31i 0.86 (2) 2.55 (3) 3.347 (3) 154 (2)
C39—H39A⋯O32iii 0.99 2.49 3.443 (4) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).

supplementary crystallographic information

Comment

The title compound (I) has been employed as a tri- and tetradentate ligand for the complexation of transition metal ions such as vanadium(IV), vanadium(V), copper(II) and cadmium(II) (Haber et al., 2003; Kenar et al., 2001; Li et al., 1988; Rajendiran et al., 2007). We are interested in this compound in the search for ligands capable of forming macrocyclic structures with boronic acids (Barba et al., 2000; Fujita et al., 2008; Höpfl, 2002; Severin, 2009).

The asymmetric unit of (I) contains two conformers (Ia, Ib) (Fig. 1) with similar bond lengths between equivalent non-H atoms (differences less than 3 s.u.). The torsion angles (C–C–N–C) in the fragments CH2CH2NHCH2 are +62.7 (3) and -177.5 (2)° for Ia and Ib, respectively, showing that Ia and Ib are conformational isomers. The dihedral angles in the NCH2CH2N ethylene fragments are -171.8 (2) and -176.1 (2)°, respectively.

From reports in the literature it is known that salicylidene imines form keto and enol tautomers, both in solution and the solid state (Domínguez et al., 2011; Fujiwara et al., 2009; Ogawa et al., 1998; Rodríguez et al., 2007). In the crystal structure both conformers correspond to the enol form. This is evidenced by the presence of an intramolecular O–H···N hydrogen bond formed between the phenolic OH group and the imine function, and a comparative analysis of the bond lengths within the salicylidene fragment. The values for the Carom–O and C=N bond lengths with values of 1.349 (3) and 1.274 (3)–1.275 (4) Å, respectively, are within the range expected for enol tautomers. The same is true for the Carom–Carom bond lengths with values ranging from 1.374 (4)–1.417 (4) Å (Domínguez et al., 2011). From a careful crystallographic analysis of eight salicylidene aminoalcohols, Domínguez et al. concluded that the dominant hydrogen bonding pattern in the crystal structures of enol tautomers are intermolecular O–H···O interactions formed between the pendant NCH2CH2OH fragments of neighboring molecules. For keto tautomers, intermolecular O–H···O interactions typically involve the Carom–O oxygen atom (Domínguez et al., 2011). In the crystal structure of the compound described herein, the crystallographically independent conformers are linked through O–H···N interactions between the pendant aliphatic NCH2CH2OH groups to give one-dimensional chains along axis b. Neighboring chains are further linked parallel to the a axis by N–H···O and C–H···O interactions involving as acceptor atoms the oxygen atoms of the phenolic and aliphatic O–H functions to form overall two-dimensional hydrogen bonded layers propagating parallel to the ab plane (Fig. 2).

Experimental

For the preparation of (I), salicylaldehyde (0.234 g, 1.92 mmol) and 2-(2-aminoethylamino)ethanol (0.200 g, 1.92 mmol) were dissolved in 20 ml of ethanol. After reflux for 1 h, 60 ml of chloroform were added and the resulting solution was dried over anhydrous MgSO4. Evaporation of the solvent mixture under vacuum gave a yellow oil. Crystals suitable for X-ray diffraction analysis were grown from a solution in chloroform, which was overlayered with n-hexane. Yield: 0.310 g (77%). M.p. 358 K.

Refinement

H atoms were positioned geometrically and constrained using the riding-model approximation [C–Haryl and C–Himine = 0.95 Å, C–Haliphatic = 0.99 Å, Uiso(H) = 1.2 Ueq(C)]. Hydrogen atoms bonded to O and N were located in difference Fourier maps; however, the coordinates of the O–H and N–H hydrogen atoms were refined with distance and isotropic displacement parameter restraints: O–H = 0.840 (1) Å, N–H = 0.860 (1) Å and [Uiso(H) = 1.5 Ueq(O, N)].

Figures

Fig. 1.

Fig. 1.

Perspective view of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Fragment of the 2D layer parallel to the ab plane, showing intramolecular O–H···N and intermolecular N–H···O, O–H···N and C–H···O hydrogen bonding interactions. These fragments are linked further through O2–H2···N32 hydrogen bonds to give the overall 2D layer. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C11H16N2O2 Dx = 1.286 Mg m3
Mr = 208.26 Melting point: 358 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2547 reflections
a = 7.0047 (11) Å θ = 2.9–25.4°
b = 14.171 (2) Å µ = 0.09 mm1
c = 21.681 (3) Å T = 100 K
V = 2152.1 (6) Å3 Plate, yellow
Z = 8 0.45 × 0.08 × 0.07 mm
F(000) = 896

Data collection

Bruker SMART CCD area-detector diffractometer 2677 independent reflections
Radiation source: fine-focus sealed tube 2311 reflections with I > 2σ(I)
graphite Rint = 0.052
φ and ω scans θmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −8→8
Tmin = 0.786, Tmax = 0.994 k = −9→18
12054 measured reflections l = −27→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4481P] where P = (Fo2 + 2Fc2)/3
2677 reflections (Δ/σ)max < 0.001
289 parameters Δρmax = 0.26 e Å3
6 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3350 (3) 0.69081 (15) 0.11061 (9) 0.0234 (5)
H1 0.442 (2) 0.674 (2) 0.1244 (14) 0.035*
O2 1.4419 (3) 0.62189 (16) 0.25568 (10) 0.0298 (5)
H2 1.453 (6) 0.5647 (7) 0.2462 (17) 0.045*
N1 0.6713 (3) 0.62184 (17) 0.12202 (11) 0.0210 (5)
N2 1.0729 (3) 0.69806 (18) 0.22607 (11) 0.0215 (6)
H2A 1.161 (3) 0.691 (2) 0.1990 (11) 0.032*
C1 0.3377 (4) 0.6585 (2) 0.05212 (13) 0.0193 (6)
C2 0.5001 (4) 0.61174 (19) 0.02788 (13) 0.0191 (6)
C3 0.4962 (4) 0.5809 (2) −0.03349 (13) 0.0224 (6)
H3 0.6044 0.5495 −0.0502 0.027*
C4 0.3373 (5) 0.5954 (2) −0.07020 (14) 0.0273 (7)
H4 0.3367 0.5744 −0.1118 0.033*
C5 0.1788 (5) 0.6408 (2) −0.04570 (14) 0.0280 (7)
H5 0.0692 0.6505 −0.0707 0.034*
C6 0.1789 (4) 0.6719 (2) 0.01469 (14) 0.0231 (6)
H6 0.0693 0.7029 0.0308 0.028*
C7 0.6692 (4) 0.59821 (19) 0.06535 (13) 0.0194 (6)
H7 0.7802 0.5713 0.0474 0.023*
C8 0.8463 (4) 0.6083 (2) 0.15798 (13) 0.0232 (6)
H8A 0.9544 0.5946 0.1300 0.028*
H8B 0.8307 0.5540 0.1863 0.028*
C9 0.8875 (4) 0.6970 (2) 0.19473 (14) 0.0236 (7)
H9A 0.8811 0.7519 0.1665 0.028*
H9B 0.7858 0.7050 0.2260 0.028*
C10 1.0972 (4) 0.6245 (2) 0.27303 (13) 0.0251 (7)
H10A 1.0782 0.5616 0.2542 0.030*
H10B 1.0007 0.6327 0.3060 0.030*
C11 1.2954 (4) 0.6306 (2) 0.30039 (14) 0.0289 (7)
H11A 1.3094 0.6920 0.3218 0.035*
H11B 1.3106 0.5801 0.3315 0.035*
O31 −0.2420 (3) 0.35742 (16) 0.10565 (9) 0.0252 (5)
H31 −0.134 (2) 0.375 (2) 0.1175 (15) 0.038*
O32 0.8773 (3) 0.39234 (15) 0.25880 (11) 0.0279 (5)
H32 0.897 (5) 0.3345 (6) 0.2532 (17) 0.042*
N31 0.1079 (3) 0.41785 (17) 0.10613 (11) 0.0207 (5)
N32 0.4908 (3) 0.42869 (18) 0.22487 (11) 0.0196 (5)
H32A 0.586 (3) 0.423 (2) 0.2002 (12) 0.029*
C31 −0.2312 (4) 0.3602 (2) 0.04357 (13) 0.0204 (6)
C32 −0.0647 (4) 0.3916 (2) 0.01297 (13) 0.0198 (6)
C33 −0.0628 (4) 0.3926 (2) −0.05144 (13) 0.0239 (7)
H33 0.0479 0.4145 −0.0723 0.029*
C34 −0.2171 (5) 0.3626 (2) −0.08532 (14) 0.0272 (7)
H34 −0.2124 0.3630 −0.1291 0.033*
C35 −0.3797 (5) 0.3319 (2) −0.05493 (15) 0.0284 (7)
H35 −0.4868 0.3110 −0.0781 0.034*
C36 −0.3872 (4) 0.3314 (2) 0.00889 (14) 0.0246 (7)
H36 −0.5003 0.3111 0.0291 0.029*
C37 0.1035 (4) 0.4199 (2) 0.04734 (13) 0.0203 (6)
H37 0.2133 0.4406 0.0255 0.024*
C38 0.2801 (4) 0.4497 (2) 0.13747 (13) 0.0219 (6)
H38A 0.2631 0.5160 0.1508 0.026*
H38B 0.3890 0.4476 0.1084 0.026*
C39 0.3245 (4) 0.3893 (2) 0.19290 (13) 0.0208 (6)
H39A 0.2133 0.3879 0.2211 0.025*
H39B 0.3519 0.3238 0.1796 0.025*
C40 0.5399 (4) 0.3768 (2) 0.28123 (13) 0.0228 (7)
H40A 0.5419 0.3082 0.2726 0.027*
H40B 0.4427 0.3889 0.3134 0.027*
C41 0.7342 (4) 0.4083 (2) 0.30387 (15) 0.0255 (7)
H41A 0.7297 0.4764 0.3140 0.031*
H41B 0.7669 0.3734 0.3420 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0208 (10) 0.0298 (12) 0.0194 (11) 0.0035 (9) 0.0004 (9) −0.0023 (9)
O2 0.0253 (12) 0.0260 (12) 0.0380 (13) 0.0013 (10) −0.0014 (10) −0.0016 (11)
N1 0.0205 (12) 0.0191 (13) 0.0233 (13) −0.0006 (11) −0.0006 (10) −0.0003 (11)
N2 0.0187 (12) 0.0240 (13) 0.0218 (13) −0.0014 (11) 0.0016 (10) 0.0007 (11)
C1 0.0243 (14) 0.0148 (14) 0.0188 (14) −0.0034 (12) 0.0020 (12) 0.0043 (11)
C2 0.0226 (13) 0.0136 (14) 0.0210 (14) −0.0054 (12) 0.0016 (12) 0.0030 (12)
C3 0.0273 (15) 0.0174 (15) 0.0224 (15) −0.0026 (12) 0.0068 (12) −0.0001 (12)
C4 0.0421 (18) 0.0217 (16) 0.0180 (15) −0.0037 (15) −0.0049 (14) 0.0001 (12)
C5 0.0304 (16) 0.0258 (17) 0.0277 (17) 0.0000 (14) −0.0102 (14) 0.0052 (14)
C6 0.0210 (14) 0.0193 (15) 0.0290 (16) 0.0014 (12) −0.0009 (13) 0.0027 (13)
C7 0.0182 (13) 0.0151 (14) 0.0250 (15) −0.0013 (11) 0.0050 (12) −0.0007 (12)
C8 0.0221 (14) 0.0221 (16) 0.0254 (16) 0.0017 (13) −0.0048 (12) −0.0011 (13)
C9 0.0195 (14) 0.0241 (16) 0.0272 (16) 0.0015 (13) −0.0013 (12) −0.0028 (14)
C10 0.0264 (15) 0.0296 (18) 0.0193 (15) −0.0036 (14) 0.0017 (12) 0.0002 (14)
C11 0.0311 (17) 0.0310 (18) 0.0248 (16) 0.0002 (14) −0.0048 (13) 0.0001 (14)
O31 0.0219 (10) 0.0321 (13) 0.0217 (11) −0.0051 (10) 0.0009 (9) 0.0000 (10)
O32 0.0225 (11) 0.0244 (12) 0.0369 (13) 0.0006 (10) 0.0018 (9) 0.0042 (11)
N31 0.0215 (12) 0.0195 (13) 0.0211 (13) 0.0013 (10) 0.0001 (10) −0.0016 (10)
N32 0.0183 (12) 0.0219 (13) 0.0187 (13) −0.0010 (10) 0.0023 (10) 0.0022 (11)
C31 0.0242 (14) 0.0150 (15) 0.0221 (15) 0.0026 (12) −0.0019 (12) −0.0020 (12)
C32 0.0226 (13) 0.0140 (14) 0.0227 (15) 0.0013 (12) −0.0012 (12) 0.0005 (12)
C33 0.0274 (15) 0.0230 (17) 0.0213 (15) 0.0040 (13) 0.0038 (12) 0.0020 (13)
C34 0.0412 (18) 0.0218 (16) 0.0186 (15) 0.0020 (14) −0.0053 (13) −0.0011 (13)
C35 0.0336 (18) 0.0197 (16) 0.0319 (17) 0.0010 (14) −0.0132 (14) −0.0015 (14)
C36 0.0276 (15) 0.0163 (15) 0.0299 (17) 0.0009 (12) 0.0011 (13) 0.0018 (13)
C37 0.0199 (14) 0.0184 (15) 0.0225 (15) 0.0030 (12) 0.0032 (12) 0.0011 (12)
C38 0.0209 (14) 0.0220 (16) 0.0227 (15) −0.0006 (12) −0.0002 (11) 0.0016 (13)
C39 0.0170 (12) 0.0227 (16) 0.0228 (14) −0.0021 (13) −0.0007 (12) −0.0004 (13)
C40 0.0239 (15) 0.0252 (17) 0.0192 (15) 0.0000 (13) 0.0013 (12) 0.0007 (13)
C41 0.0293 (15) 0.0241 (17) 0.0230 (15) 0.0030 (14) −0.0055 (13) −0.0003 (13)

Geometric parameters (Å, °)

O1—C1 1.349 (3) O31—C31 1.349 (3)
O1—H1 0.8400 (11) O31—H31 0.8401 (11)
O2—C11 1.417 (4) O32—C41 1.418 (4)
O2—H2 0.8401 (11) O32—H32 0.8400 (11)
N1—C7 1.274 (3) N31—C37 1.275 (4)
N1—C8 1.466 (3) N31—C38 1.456 (4)
N2—C9 1.466 (4) N32—C39 1.466 (3)
N2—C10 1.467 (4) N32—C40 1.467 (4)
N2—H2A 0.8600 (11) N32—H32A 0.8600 (11)
C1—C6 1.391 (4) C31—C36 1.388 (4)
C1—C2 1.417 (4) C31—C32 1.413 (4)
C2—C3 1.401 (4) C32—C33 1.397 (4)
C2—C7 1.448 (4) C32—C37 1.451 (4)
C3—C4 1.383 (4) C33—C34 1.374 (4)
C3—H3 0.9500 C33—H33 0.9500
C4—C5 1.389 (5) C34—C35 1.386 (5)
C4—H4 0.9500 C34—H34 0.9500
C5—C6 1.382 (4) C35—C36 1.385 (4)
C5—H5 0.9500 C35—H35 0.9500
C6—H6 0.9500 C36—H36 0.9500
C7—H7 0.9500 C37—H37 0.9500
C8—C9 1.516 (4) C38—C39 1.508 (4)
C8—H8A 0.9900 C38—H38A 0.9900
C8—H8B 0.9900 C38—H38B 0.9900
C9—H9A 0.9900 C39—H39A 0.9900
C9—H9B 0.9900 C39—H39B 0.9900
C10—C11 1.512 (4) C40—C41 1.514 (4)
C10—H10A 0.9900 C40—H40A 0.9900
C10—H10B 0.9900 C40—H40B 0.9900
C11—H11A 0.9900 C41—H41A 0.9900
C11—H11B 0.9900 C41—H41B 0.9900
C1—O1—H1 103 (2) C31—O31—H31 104 (2)
C11—O2—H2 109 (3) C41—O32—H32 112 (3)
C7—N1—C8 119.2 (3) C37—N31—C38 118.6 (3)
C9—N2—C10 114.7 (2) C39—N32—C40 112.9 (2)
C9—N2—H2A 109 (2) C39—N32—H32A 107 (2)
C10—N2—H2A 108 (2) C40—N32—H32A 107 (2)
O1—C1—C6 119.4 (3) O31—C31—C36 119.2 (3)
O1—C1—C2 121.3 (3) O31—C31—C32 121.6 (3)
C6—C1—C2 119.4 (3) C36—C31—C32 119.2 (3)
C3—C2—C1 118.8 (3) C33—C32—C31 118.7 (3)
C3—C2—C7 120.5 (3) C33—C32—C37 120.2 (3)
C1—C2—C7 120.7 (2) C31—C32—C37 121.1 (2)
C4—C3—C2 121.1 (3) C34—C33—C32 121.6 (3)
C4—C3—H3 119.5 C34—C33—H33 119.2
C2—C3—H3 119.5 C32—C33—H33 119.2
C3—C4—C5 119.5 (3) C33—C34—C35 119.3 (3)
C3—C4—H4 120.3 C33—C34—H34 120.4
C5—C4—H4 120.3 C35—C34—H34 120.4
C6—C5—C4 120.7 (3) C36—C35—C34 120.5 (3)
C6—C5—H5 119.7 C36—C35—H35 119.7
C4—C5—H5 119.7 C34—C35—H35 119.7
C5—C6—C1 120.6 (3) C35—C36—C31 120.6 (3)
C5—C6—H6 119.7 C35—C36—H36 119.7
C1—C6—H6 119.7 C31—C36—H36 119.7
N1—C7—C2 121.0 (3) N31—C37—C32 121.8 (3)
N1—C7—H7 119.5 N31—C37—H37 119.1
C2—C7—H7 119.5 C32—C37—H37 119.1
N1—C8—C9 109.3 (2) N31—C38—C39 111.5 (2)
N1—C8—H8A 109.8 N31—C38—H38A 109.3
C9—C8—H8A 109.8 C39—C38—H38A 109.3
N1—C8—H8B 109.8 N31—C38—H38B 109.3
C9—C8—H8B 109.8 C39—C38—H38B 109.3
H8A—C8—H8B 108.3 H38A—C38—H38B 108.0
N2—C9—C8 114.9 (2) N32—C39—C38 108.9 (2)
N2—C9—H9A 108.5 N32—C39—H39A 109.9
C8—C9—H9A 108.5 C38—C39—H39A 109.9
N2—C9—H9B 108.5 N32—C39—H39B 109.9
C8—C9—H9B 108.5 C38—C39—H39B 109.9
H9A—C9—H9B 107.5 H39A—C39—H39B 108.3
N2—C10—C11 109.8 (3) N32—C40—C41 109.5 (2)
N2—C10—H10A 109.7 N32—C40—H40A 109.8
C11—C10—H10A 109.7 C41—C40—H40A 109.8
N2—C10—H10B 109.7 N32—C40—H40B 109.8
C11—C10—H10B 109.7 C41—C40—H40B 109.8
H10A—C10—H10B 108.2 H40A—C40—H40B 108.2
O2—C11—C10 113.0 (2) O32—C41—C40 111.4 (2)
O2—C11—H11A 109.0 O32—C41—H41A 109.3
C10—C11—H11A 109.0 C40—C41—H41A 109.3
O2—C11—H11B 109.0 O32—C41—H41B 109.3
C10—C11—H11B 109.0 C40—C41—H41B 109.3
H11A—C11—H11B 107.8 H41A—C41—H41B 108.0
O1—C1—C2—C3 −179.0 (3) O31—C31—C32—C33 179.9 (3)
C6—C1—C2—C3 0.4 (4) C36—C31—C32—C33 0.1 (4)
O1—C1—C2—C7 −0.6 (4) O31—C31—C32—C37 1.5 (4)
C6—C1—C2—C7 178.8 (2) C36—C31—C32—C37 −178.3 (3)
C1—C2—C3—C4 0.0 (4) C31—C32—C33—C34 −1.0 (4)
C7—C2—C3—C4 −178.5 (3) C37—C32—C33—C34 177.4 (3)
C2—C3—C4—C5 −0.4 (5) C32—C33—C34—C35 0.9 (5)
C3—C4—C5—C6 0.4 (5) C33—C34—C35—C36 0.1 (5)
C4—C5—C6—C1 0.0 (5) C34—C35—C36—C31 −1.0 (5)
O1—C1—C6—C5 179.0 (3) O31—C31—C36—C35 −178.9 (3)
C2—C1—C6—C5 −0.4 (4) C32—C31—C36—C35 0.9 (4)
C8—N1—C7—C2 −179.0 (2) C38—N31—C37—C32 −178.4 (2)
C3—C2—C7—N1 −176.6 (3) C33—C32—C37—N31 −178.4 (3)
C1—C2—C7—N1 5.0 (4) C31—C32—C37—N31 0.0 (4)
C7—N1—C8—C9 133.4 (3) C37—N31—C38—C39 −141.5 (3)
C10—N2—C9—C8 −62.7 (3) C40—N32—C39—C38 177.5 (2)
N1—C8—C9—N2 −171.8 (2) N31—C38—C39—N32 −176.1 (2)
C9—N2—C10—C11 178.0 (2) C39—N32—C40—C41 168.2 (2)
N2—C10—C11—O2 −57.8 (4) N32—C40—C41—O32 −59.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.84 (2) 1.77 (2) 2.562 (3) 157 (3)
O2—H2···N32i 0.84 (1) 2.00 (1) 2.839 (3) 178 (4)
N2—H2A···O1i 0.86 (2) 2.27 (2) 3.106 (3) 165 (2)
O31—H31···N31 0.84 (2) 1.82 (2) 2.596 (3) 154 (3)
O32—H32···N2ii 0.84 (1) 2.00 (1) 2.795 (3) 158 (4)
N32—H32A···O31i 0.86 (2) 2.55 (3) 3.347 (3) 154 (2)
C39—H39A···O32iii 0.99 2.49 3.443 (4) 161

Symmetry codes: (i) x+1, y, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2347).

References

  1. Barba, V., Cuahutle, D., Ochoa, M. E., Santillan, R. & Farfán, N. (2000). Inorg. Chim. Acta, 303, 7–11.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2000). SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  4. Bruker (2001). SAINT-Plus Bruker AXS Inc, Madison, Wisconsin, USA.
  5. Domínguez, O., Rodríguez-Molina, B., Rodríguez, M., Ariza, A., Farfán, N. & Santillan, R. (2011). New J. Chem. 35, 156–164.
  6. Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091. [DOI] [PubMed]
  7. Fujiwara, T., Harada, J. & Ogawa, K. (2009). J. Phys. Chem. A, 113, 1822–1826. [DOI] [PubMed]
  8. Haber, V., Císařová, I. & Fábry, J. (2003). Polyhedron, 22, 3451–3459.
  9. Höpfl, H. (2002). Struct. Bonding, 103, 1–56.
  10. Kenar, A., Arici, C., Aksu, M. L., Tahir, M. N., Durmuş, S. & Atakol, O. (2001). Anal. Sci. 17, 569–570. [DOI] [PubMed]
  11. Li, X., La, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657–4664.
  12. Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.
  13. Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208–8221. [DOI] [PubMed]
  14. Rodríguez, M., Santillan, R., López, Y., Farfán, N., Barba, V., Nakatani, K., García-Baez, E. V. & Padilla-Martínez, I. I. (2007). Supramol. Chem. 19, 641–653.
  15. Severin, K. (2009). Dalton Trans. pp. 5254–5264. [DOI] [PubMed]
  16. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039997/pk2347sup1.cif

e-67-o2849-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039997/pk2347Isup2.hkl

e-67-o2849-Isup2.hkl (131.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039997/pk2347Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES