Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2862. doi: 10.1107/S1600536811040712

2-(2-Hy­droxy­phen­yl)-1,3-benzothia­zole-6-carbaldehyde

Kew-Yu Chen a,*, Tzu-Chien Fang a, Ming-Jen Chang a, Hsing-Yang Tsai a, Ming-Hui Luo a
PMCID: PMC3247597  PMID: 22219902

Abstract

The mol­ecule of the title compound, C14H9NO2S, is nearly planar, the maximum atomic deviation being 0.081 (2) Å. An intra­molecular O—H⋯N bond generates an S(6) ring motif. In the crystal, inversion-related mol­ecules linked by a pair of weak C—H⋯O hydrogen bonds form a supra­molecular dimer. π–π stacking is observed between the thia­zole and benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.7679 (9) Å.

Related literature

For the spectroscopy and preparation of the title compound, see: Hsieh et al. (2008). For the spectroscopy and applications of benzoxazole and benzothia­zole derivatives, see: Chen & Pang (2009, 2010); Hrobáriková et al. (2010); Kim et al. (2010a ,b ); Lijima et al. (2010); Lim et al. (2011); López-Ruiz et al. (2011); Tanaka et al. (2001). For related structures, see: Tong (2005); Hahn et al. (1998). For graph-set theory, see: Bernstein et al. (1995).graphic file with name e-67-o2862-scheme1.jpg

Experimental

Crystal data

  • C14H9NO2S

  • M r = 255.28

  • Monoclinic, Inline graphic

  • a = 8.2645 (3) Å

  • b = 5.6449 (2) Å

  • c = 23.8341 (9) Å

  • β = 98.147 (2)°

  • V = 1100.69 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.38 × 0.14 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.882, T max = 0.992

  • 8427 measured reflections

  • 1943 independent reflections

  • 1333 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.058

  • S = 0.90

  • 1943 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040712/xu5345sup1.cif

e-67-o2862-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040712/xu5345Isup2.hkl

e-67-o2862-Isup2.hkl (93.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040712/xu5345Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.89 (2) 1.81 (2) 2.6228 (18) 150 (2)
C5—H5⋯O2i 0.93 2.61 3.293 (2) 130

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Science Council and Feng Chia University in Taiwan.

supplementary crystallographic information

Comment

The excited-state intramolecular proton transfer (ESIPT) reaction of 2-(2-hydroxyphenyl)benzoxazole and 2-(2-hydroxyphenyl)benzothiazole derivatives has been investigated for past years (Hsieh et al., 2008; Kim et al., 2010a,b; Lijima et al., 2010; López-Ruiz et al., 2011), which incorporates transfer of a hydroxy proton to the imine nitrogen through a intramolecular six-membered-ring hydrogen-bonding system (Chen et al., 2009, 2010). The unusual photophysical property of the resulting proton-transfer tautomer has found many important applications (Hrobáriková et al., 2010; Lim et al., 2011; Tanaka et al., 2001).

The molecular structure of the title compound (HBT) is shown in Figure 1. The molecule is nearly planar, which is consistent with previous studies (Tong, 2005; Hahn et al., 1998). HBT possesses an intramolecular O—H···N hydrogen bond (Table 1), which generates an S(6) ring motif (Bernstein et al., 1995). In the crystal (Figure 2), inversion-related molecules are linked by a pair of weak C—H···O hydrogen bonds, forming a cyclic dimers with R22(18) graph-set motif. π-π stacing is observed between thiazole and C1i-benzene rings of adjacent molecules [symmetry code: (i): 2-x,2-y,1-z], the centroid-to-centroid distance being 3.7679 (9) Å.

Experimental

The title compound was synthesized according to the literature (Hsieh et al., 2008). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from the chloroform solution.

Refinement

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A section of the crystal packing of the title compound, viewed down the b axis. Green dashed lines denote the intermolecular C—H···O hydrogen bonds.

Crystal data

C14H9NO2S F(000) = 528
Mr = 255.28 Dx = 1.541 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2yn Cell parameters from 2297 reflections
a = 8.2645 (3) Å θ = 2.5–25.7°
b = 5.6449 (2) Å µ = 0.29 mm1
c = 23.8341 (9) Å T = 150 K
β = 98.147 (2)° Plate, yellow
V = 1100.69 (7) Å3 0.38 × 0.14 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1943 independent reflections
Radiation source: fine-focus sealed tube 1333 reflections with I > 2σ(I)
graphite Rint = 0.042
φ and ω scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.882, Tmax = 0.992 k = −6→3
8427 measured reflections l = −28→28

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90 (Δ/σ)max < 0.001
1943 reflections Δρmax = 0.22 e Å3
168 parameters Δρmin = −0.27 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0014 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.74344 (6) 0.79801 (8) 0.392532 (18) 0.02213 (16)
O1 0.51794 (15) 0.6205 (2) 0.59718 (5) 0.0317 (4)
O2 1.05490 (15) 1.4470 (2) 0.35839 (5) 0.0272 (3)
N1 0.88683 (16) 1.1973 (2) 0.42282 (6) 0.0183 (3)
C1 0.81872 (19) 1.1165 (3) 0.46928 (7) 0.0167 (4)
C2 0.7362 (2) 0.8986 (3) 0.46067 (7) 0.0169 (4)
C3 0.66326 (19) 0.7940 (3) 0.50315 (7) 0.0189 (4)
H3 0.6076 0.6510 0.4970 0.023*
C4 0.67509 (19) 0.9071 (3) 0.55528 (7) 0.0183 (4)
C5 0.7578 (2) 1.1247 (3) 0.56406 (7) 0.0211 (4)
H5 0.7644 1.1987 0.5992 0.025*
C6 0.82896 (19) 1.2299 (3) 0.52162 (7) 0.0204 (4)
H6 0.8830 1.3741 0.5277 0.024*
C7 0.5997 (2) 0.7988 (3) 0.60128 (7) 0.0252 (4)
H7 0.6162 0.8736 0.6364 0.030*
C11 0.91907 (19) 1.0821 (3) 0.32631 (7) 0.0168 (4)
C12 1.0157 (2) 1.2802 (3) 0.31764 (7) 0.0190 (4)
C13 1.07588 (19) 1.3083 (3) 0.26659 (7) 0.0219 (4)
H13 1.1400 1.4394 0.2611 0.026*
C14 1.04146 (19) 1.1439 (3) 0.22413 (7) 0.0229 (5)
H14 1.0826 1.1644 0.1901 0.027*
C15 0.9459 (2) 0.9477 (3) 0.23149 (7) 0.0239 (5)
H15 0.9225 0.8371 0.2026 0.029*
C16 0.8862 (2) 0.9183 (3) 0.28209 (7) 0.0222 (4)
H16 0.8223 0.7863 0.2870 0.027*
C17 0.85778 (19) 1.0478 (3) 0.38021 (7) 0.0180 (4)
H2 1.005 (2) 1.407 (4) 0.3877 (7) 0.071 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0278 (3) 0.0195 (3) 0.0199 (3) −0.0044 (2) 0.0062 (2) −0.0013 (2)
O1 0.0349 (8) 0.0318 (8) 0.0295 (8) −0.0074 (7) 0.0085 (7) 0.0053 (6)
O2 0.0346 (8) 0.0245 (8) 0.0233 (8) −0.0092 (6) 0.0070 (7) −0.0026 (6)
N1 0.0198 (9) 0.0164 (8) 0.0186 (8) 0.0005 (7) 0.0025 (7) 0.0009 (7)
C1 0.0154 (10) 0.0160 (10) 0.0181 (10) 0.0040 (8) 0.0003 (8) 0.0037 (8)
C2 0.0172 (10) 0.0169 (10) 0.0165 (10) 0.0029 (8) 0.0016 (8) 0.0006 (8)
C3 0.0162 (10) 0.0168 (10) 0.0233 (11) 0.0011 (8) 0.0016 (8) 0.0021 (9)
C4 0.0170 (10) 0.0194 (10) 0.0187 (10) 0.0043 (8) 0.0034 (8) 0.0037 (8)
C5 0.0226 (11) 0.0225 (11) 0.0179 (11) 0.0051 (9) 0.0019 (9) −0.0020 (8)
C6 0.0209 (11) 0.0178 (10) 0.0220 (11) −0.0004 (8) 0.0011 (8) −0.0001 (8)
C7 0.0241 (12) 0.0299 (11) 0.0215 (11) 0.0069 (10) 0.0030 (9) 0.0008 (9)
C11 0.0162 (10) 0.0173 (10) 0.0171 (10) 0.0008 (8) 0.0028 (8) 0.0023 (8)
C12 0.0183 (10) 0.0184 (10) 0.0194 (10) 0.0019 (9) −0.0003 (8) −0.0006 (9)
C13 0.0207 (11) 0.0220 (10) 0.0233 (11) −0.0037 (8) 0.0048 (9) 0.0048 (9)
C14 0.0202 (11) 0.0292 (12) 0.0201 (11) 0.0032 (9) 0.0060 (9) 0.0051 (9)
C15 0.0279 (12) 0.0240 (11) 0.0198 (11) 0.0016 (9) 0.0040 (9) −0.0030 (8)
C16 0.0238 (11) 0.0184 (10) 0.0244 (11) −0.0023 (9) 0.0038 (9) 0.0011 (9)
C17 0.0146 (10) 0.0163 (10) 0.0228 (11) 0.0030 (8) 0.0016 (8) 0.0022 (8)

Geometric parameters (Å, °)

S—C2 1.7296 (16) C5—H5 0.9300
S—C17 1.7454 (17) C6—H6 0.9300
O1—C7 1.2087 (19) C7—H7 0.9300
O2—C12 1.3588 (19) C11—C16 1.400 (2)
O2—H2 0.890 (14) C11—C12 1.406 (2)
N1—C17 1.3160 (18) C11—C17 1.459 (2)
N1—C1 1.3882 (19) C12—C13 1.387 (2)
C1—C6 1.394 (2) C13—C14 1.373 (2)
C1—C2 1.407 (2) C13—H13 0.9300
C2—C3 1.382 (2) C14—C15 1.386 (2)
C3—C4 1.388 (2) C14—H14 0.9300
C3—H3 0.9300 C15—C16 1.376 (2)
C4—C5 1.407 (2) C15—H15 0.9300
C4—C7 1.469 (2) C16—H16 0.9300
C5—C6 1.375 (2)
C2—S—C17 89.10 (8) C4—C7—H7 117.4
C12—O2—H2 107.2 (14) C16—C11—C12 117.93 (15)
C17—N1—C1 110.79 (14) C16—C11—C17 121.39 (15)
N1—C1—C6 125.67 (16) C12—C11—C17 120.67 (15)
N1—C1—C2 114.43 (15) O2—C12—C13 117.94 (15)
C6—C1—C2 119.88 (16) O2—C12—C11 121.94 (15)
C3—C2—C1 121.30 (16) C13—C12—C11 120.11 (16)
C3—C2—S 128.62 (14) C14—C13—C12 120.42 (16)
C1—C2—S 110.07 (12) C14—C13—H13 119.8
C2—C3—C4 118.44 (16) C12—C13—H13 119.8
C2—C3—H3 120.8 C13—C14—C15 120.61 (16)
C4—C3—H3 120.8 C13—C14—H14 119.7
C3—C4—C5 120.40 (16) C15—C14—H14 119.7
C3—C4—C7 119.55 (16) C16—C15—C14 119.28 (16)
C5—C4—C7 120.05 (16) C16—C15—H15 120.4
C6—C5—C4 121.13 (16) C14—C15—H15 120.4
C6—C5—H5 119.4 C15—C16—C11 121.64 (16)
C4—C5—H5 119.4 C15—C16—H16 119.2
C5—C6—C1 118.84 (16) C11—C16—H16 119.2
C5—C6—H6 120.6 N1—C17—C11 123.12 (15)
C1—C6—H6 120.6 N1—C17—S 115.59 (12)
O1—C7—C4 125.29 (17) C11—C17—S 121.27 (12)
O1—C7—H7 117.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N1 0.89 (2) 1.81 (2) 2.6228 (18) 150 (2)
C5—H5···O2i 0.93 2.61 3.293 (2) 130

Symmetry codes: (i) −x+2, −y+3, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5345).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, W.-H. & Pang, Y. (2009). Tetrahedron Lett. 50, 6680–6683.
  4. Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Hahn, F. E., Imhof, L. & Lügger, T. (1998). Acta Cryst. C54, 668–669.
  8. Hrobáriková, V., Hrobárik, P., Gajdos, P., Fitilis, I., Fakis, M., Persephonis, P. & Zahradnik, P. (2010). J. Org. Chem. 75, 3053–3068. [DOI] [PubMed]
  9. Hsieh, C.-C., Cheng, Y.-M., Hsu, C.-J., Chen, K.-Y. & Chou, P.-T. (2008). J. Phys. Chem. A, 112, 8323–8332. [DOI] [PubMed]
  10. Kim, T. H., Kwon, N. Y. & Lee, T. S. (2010a). Tetrahedron Lett. 51, 5596–5600.
  11. Kim, C. H., Park, J., Seo, J., Park, S. Y. & Joo, T. (2010b). J. Phys. Chem. A, 114, 5618–5629. [DOI] [PubMed]
  12. Lijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609. [DOI] [PubMed]
  13. Lim, C. K., Seo, J., Kim, S., Kwon, I. C., Ahn, C. H. & Park, S. Y. (2011). Dyes Pigments, 90, 284–289.
  14. López-Ruiz, H., Briseno-Ortega, H., Rojas-Lima, S., Santillan, R. & Farfán, N. (2011). Tetrahedron Lett. 52, 4308–4312.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Tanaka, K., Kumagai, T., Aoki, H., Deguchi, M. & Iwata, S. (2001). J. Org. Chem. 66, 7328–7333. [DOI] [PubMed]
  17. Tong, Y.-P. (2005). Acta Cryst. E61, o3076–o3078.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040712/xu5345sup1.cif

e-67-o2862-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040712/xu5345Isup2.hkl

e-67-o2862-Isup2.hkl (93.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040712/xu5345Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES