Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2865. doi: 10.1107/S1600536811040554

N-(4-Hy­droxy­phen­yl)-3,4,5-trimeth­oxy­benzamide

Hyeong Choi a, Yong Suk Shim a, Byung Hee Han a, Sung Kwon Kang a,*, Chang Keun Sung b
PMCID: PMC3247600  PMID: 22219905

Abstract

In the title amide compound, C16H17NO5, the dihedral angle between the benzene rings is 71.59 (4)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional array parallel to the ab plane.

Related literature

For general background to tyrosinase and melanin, see: Kubo et al. (2000); Nerya et al. (2004). For the development of potent inhibitory agents of tyrosinase, see: Cabanes et al. (1994); Casanola-Martin et al. (2006); Thanigaimalai et al. (2010).graphic file with name e-67-o2865-scheme1.jpg

Experimental

Crystal data

  • C16H17NO5

  • M r = 303.31

  • Orthorhombic, Inline graphic

  • a = 10.4280 (5) Å

  • b = 13.4075 (6) Å

  • c = 21.5565 (8) Å

  • V = 3013.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.1 mm−1

  • T = 296 K

  • 0.23 × 0.16 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 14730 measured reflections

  • 3459 independent reflections

  • 2086 reflections with I > 2σ(I)

  • R int = 0.130

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.134

  • S = 0.97

  • 3459 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040554/is2785sup1.cif

e-67-o2865-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040554/is2785Isup2.hkl

e-67-o2865-Isup2.hkl (166.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040554/is2785Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O17i 0.87 (2) 2.18 (2) 3.029 (2) 165.8 (17)
O16—H16⋯O8ii 0.88 (4) 1.84 (4) 2.710 (2) 172 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We wish to thank the DBIO company for partial support of this work.

supplementary crystallographic information

Comment

Tyrosinase, a multi functional copper containing enzyme, is widely distributed in the plant and animal kingdom. It is responsible for catalyzing ortho-hydroxylation of phenols and ortho-phenol oxidation to corresponding quinones (Kubo et al., 2000). This enzyme was not only responsible for the browning of fruits and vegetables but also caused some dermatological problems such as flecks and melasma due to overproduction of melanin (Nerya et al., 2004). Numerous potential tyrosinase inhibitors have been discovered from natural and synthetic sources, such as a kojic acid (Cabanes et al., 1994), arbutin (Casanola-Martin et al., 2006) and phenylthiourea (Thanigaimalai et al., 2010). But some these inhibitors suffer from number of limitations, such as low activity and high toxicity. we have synthesized the title compound, (I), from the reaction of 3,4,5-trimethoxybenzoyl chloride and 4-aminophenol under ambient conditions. Herein, the crystal structure of (I) is described (Fig. 1).

The 3,4,5-trimethoxybenzoic acid moiety and 4-aminophenol group are essentially planar, with a mean deviation of 0.031 and 0.036 Å, respectively, from the corresponding least-squares plane defined by the ten and eight, respectively, constituent atoms. The dihedral angle between the benzene rings is 71.59 (4)°. The intermolecular N9—H9···O17i and O16—H16···O8ii [symmetry codes: (i) -x + 1/2, y - 1/2, z; (ii) -x - 1/2, y - 1/2, z; Table 1] hydrogen bonds allow to form an extensive two-dimensional network parallel to the ab plane (Fig. 2), which stabilizes the crystal structure.

Experimental

The 3,4,5-trimethoxybenzoyl chloride and 4-aminophenol were purchased from Sigma Chemical Co. Solvents for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound was prepared from the reaction of 3,4,5-trimethoxybenzoyl chloride (0.5 g, 1.0 mmol) and 4-aminophenol (0.4 g, 1.2 mmol) by simple substitution in THF(6 ml) with triethylamine (0.22 g, 1.2 mmol). The solvent was removed under reduced pressure. The mixture compound were purified by column chromatography on silica gel (2:1 dichloromethane/ethylacetate) to give the title compound (69%, m.p. 504 K). Colourless crystals of (I) were obtained from its ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

Atoms H9 and H16 of the NH and OH groups were located in a difference Fourier map and refined freely [refined distances: N—H = 0.87 (2) Å and O—H = 0.88 (4) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2Ueq (carrier C) for aromatic or 1.5Ueq(carrier C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

A molecular view of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.

Fig. 2.

Fig. 2.

A packing diagram of the title compound, showing a two-dimensional network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds (dashed lines).

Crystal data

C16H17NO5 F(000) = 1280
Mr = 303.31 Dx = 1.337 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3298 reflections
a = 10.4280 (5) Å θ = 2.7–25.0°
b = 13.4075 (6) Å µ = 0.1 mm1
c = 21.5565 (8) Å T = 296 K
V = 3013.9 (2) Å3 Block, colourless
Z = 8 0.23 × 0.16 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.130
graphite θmax = 27.5°, θmin = 2.7°
φ and ω scans h = −13→10
14730 measured reflections k = −14→17
3459 independent reflections l = −11→27
2086 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0597P)2] where P = (Fo2 + 2Fc2)/3
3459 reflections (Δ/σ)max < 0.001
207 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.09766 (17) 0.55474 (11) 0.38891 (8) 0.0352 (4)
C2 0.09088 (17) 0.65316 (11) 0.36913 (8) 0.0352 (4)
H2 0.0367 0.671 0.3367 0.042*
C3 0.16570 (17) 0.72450 (11) 0.39825 (8) 0.0330 (4)
C4 0.24487 (18) 0.69932 (11) 0.44779 (8) 0.0355 (4)
C5 0.2478 (2) 0.60042 (11) 0.46863 (8) 0.0387 (4)
C6 0.17580 (19) 0.52861 (12) 0.43820 (8) 0.0391 (5)
H6 0.18 0.4624 0.451 0.047*
C7 0.01230 (19) 0.48017 (12) 0.35789 (8) 0.0379 (4)
O8 −0.09130 (14) 0.50472 (9) 0.33584 (7) 0.0557 (4)
N9 0.05744 (18) 0.38648 (10) 0.35655 (8) 0.0435 (4)
H9 0.139 (2) 0.3796 (14) 0.3652 (9) 0.058 (7)*
C10 −0.00908 (19) 0.29931 (12) 0.33568 (8) 0.0376 (4)
C11 0.06275 (19) 0.22529 (12) 0.30716 (8) 0.0407 (4)
H11 0.149 0.236 0.2986 0.049*
C12 0.0057 (2) 0.13529 (12) 0.29149 (8) 0.0421 (5)
H12 0.0544 0.0854 0.273 0.051*
C13 −0.1220 (2) 0.11949 (12) 0.30309 (8) 0.0417 (5)
C14 −0.1944 (2) 0.19343 (13) 0.33081 (9) 0.0469 (5)
H14 −0.2812 0.1831 0.3383 0.056*
C15 −0.1375 (2) 0.28301 (13) 0.34741 (9) 0.0471 (5)
H15 −0.1862 0.3324 0.3665 0.057*
O16 −0.17129 (17) 0.02840 (9) 0.28685 (8) 0.0596 (5)
H16 −0.251 (4) 0.023 (2) 0.2997 (14) 0.116 (12)*
O17 0.16842 (13) 0.82370 (8) 0.38183 (6) 0.0436 (3)
C18 0.0830 (3) 0.85680 (15) 0.33432 (11) 0.0723 (7)
H18A 0.0951 0.9269 0.3274 0.108*
H18B −0.0039 0.8447 0.3469 0.108*
H18C 0.1004 0.821 0.2967 0.108*
O19 0.30929 (14) 0.77608 (8) 0.47554 (6) 0.0524 (4)
C20 0.4380 (2) 0.76199 (16) 0.49453 (12) 0.0715 (7)
H20A 0.4698 0.8224 0.5128 0.107*
H20B 0.4896 0.745 0.4592 0.107*
H20C 0.4419 0.709 0.5244 0.107*
O21 0.32026 (16) 0.58220 (8) 0.52010 (6) 0.0580 (4)
C22 0.3337 (3) 0.48202 (14) 0.54042 (11) 0.0732 (8)
H22A 0.3862 0.4802 0.577 0.11*
H22B 0.3733 0.4432 0.5083 0.11*
H22C 0.2507 0.4549 0.5497 0.11*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0363 (11) 0.0263 (9) 0.0430 (10) −0.0007 (7) 0.0014 (9) −0.0003 (7)
C2 0.0353 (11) 0.0306 (9) 0.0396 (9) 0.0020 (7) 0.0002 (8) 0.0028 (7)
C3 0.0354 (10) 0.0234 (8) 0.0401 (9) 0.0021 (7) 0.0037 (8) 0.0033 (7)
C4 0.0389 (11) 0.0266 (8) 0.0409 (10) −0.0013 (7) −0.0026 (8) −0.0033 (7)
C5 0.0446 (12) 0.0319 (9) 0.0397 (10) 0.0024 (8) −0.0066 (9) 0.0024 (7)
C6 0.0453 (12) 0.0249 (9) 0.0470 (11) 0.0020 (7) −0.0027 (9) 0.0030 (7)
C7 0.0368 (12) 0.0307 (10) 0.0462 (10) −0.0018 (7) −0.0028 (9) 0.0046 (7)
O8 0.0433 (9) 0.0392 (7) 0.0847 (11) −0.0009 (6) −0.0179 (8) 0.0071 (6)
N9 0.0376 (10) 0.0280 (8) 0.0648 (11) −0.0005 (7) −0.0098 (9) −0.0062 (6)
C10 0.0405 (12) 0.0289 (9) 0.0434 (10) −0.0031 (7) −0.0049 (9) −0.0007 (7)
C11 0.0345 (11) 0.0392 (10) 0.0484 (11) −0.0028 (8) −0.0007 (9) −0.0019 (8)
C12 0.0455 (12) 0.0350 (10) 0.0458 (11) −0.0004 (8) 0.0019 (9) −0.0071 (8)
C13 0.0486 (13) 0.0320 (10) 0.0445 (10) −0.0083 (8) 0.0010 (10) −0.0025 (7)
C14 0.0375 (12) 0.0407 (11) 0.0626 (13) −0.0059 (8) 0.0056 (10) −0.0013 (9)
C15 0.0431 (12) 0.0328 (10) 0.0653 (13) −0.0001 (8) 0.0035 (11) −0.0067 (8)
O16 0.0579 (11) 0.0425 (8) 0.0784 (11) −0.0177 (7) 0.0125 (9) −0.0186 (7)
O17 0.0488 (9) 0.0251 (6) 0.0571 (8) −0.0018 (5) −0.0083 (7) 0.0092 (5)
C18 0.0845 (19) 0.0405 (12) 0.0918 (17) −0.0007 (11) −0.0379 (15) 0.0227 (11)
O19 0.0577 (10) 0.0328 (7) 0.0666 (9) −0.0043 (6) −0.0216 (7) −0.0053 (6)
C20 0.0641 (17) 0.0598 (14) 0.0906 (17) −0.0157 (11) −0.0370 (15) 0.0139 (12)
O21 0.0823 (12) 0.0352 (7) 0.0564 (8) −0.0025 (7) −0.0279 (8) 0.0102 (6)
C22 0.105 (2) 0.0445 (13) 0.0700 (15) 0.0016 (12) −0.0323 (16) 0.0168 (10)

Geometric parameters (Å, °)

C1—C6 1.384 (2) C12—C13 1.371 (3)
C1—C2 1.389 (2) C12—H12 0.93
C1—C7 1.496 (2) C13—O16 1.371 (2)
C2—C3 1.385 (2) C13—C14 1.382 (3)
C2—H2 0.93 C14—C15 1.386 (2)
C3—O17 1.3766 (17) C14—H14 0.93
C3—C4 1.391 (2) C15—H15 0.93
C4—O19 1.3670 (19) O16—H16 0.88 (4)
C4—C5 1.400 (2) O17—C18 1.428 (2)
C5—O21 1.364 (2) C18—H18A 0.96
C5—C6 1.386 (2) C18—H18B 0.96
C6—H6 0.93 C18—H18C 0.96
C7—O8 1.225 (2) O19—C20 1.416 (3)
C7—N9 1.342 (2) C20—H20A 0.96
N9—C10 1.432 (2) C20—H20B 0.96
N9—H9 0.87 (2) C20—H20C 0.96
C10—C15 1.381 (3) O21—C22 1.420 (2)
C10—C11 1.387 (2) C22—H22A 0.96
C11—C12 1.387 (2) C22—H22B 0.96
C11—H11 0.93 C22—H22C 0.96
C6—C1—C2 120.41 (15) C11—C12—H12 119.8
C6—C1—C7 121.60 (15) O16—C13—C12 117.10 (17)
C2—C1—C7 117.88 (16) O16—C13—C14 123.00 (19)
C3—C2—C1 119.24 (16) C12—C13—C14 119.90 (16)
C3—C2—H2 120.4 C13—C14—C15 119.97 (19)
C1—C2—H2 120.4 C13—C14—H14 120
O17—C3—C2 124.22 (15) C15—C14—H14 120
O17—C3—C4 114.81 (14) C10—C15—C14 120.31 (17)
C2—C3—C4 120.97 (14) C10—C15—H15 119.8
O19—C4—C3 116.41 (14) C14—C15—H15 119.8
O19—C4—C5 124.17 (16) C13—O16—H16 110.2 (18)
C3—C4—C5 119.28 (15) C3—O17—C18 118.15 (14)
O21—C5—C6 124.09 (14) O17—C18—H18A 109.5
O21—C5—C4 116.28 (15) O17—C18—H18B 109.5
C6—C5—C4 119.60 (16) H18A—C18—H18B 109.5
C1—C6—C5 120.43 (15) O17—C18—H18C 109.5
C1—C6—H6 119.8 H18A—C18—H18C 109.5
C5—C6—H6 119.8 H18B—C18—H18C 109.5
O8—C7—N9 123.53 (17) C4—O19—C20 119.47 (15)
O8—C7—C1 121.22 (15) O19—C20—H20A 109.5
N9—C7—C1 115.25 (17) O19—C20—H20B 109.5
C7—N9—C10 126.95 (18) H20A—C20—H20B 109.5
C7—N9—H9 115.8 (13) O19—C20—H20C 109.5
C10—N9—H9 116.8 (13) H20A—C20—H20C 109.5
C15—C10—C11 119.46 (16) H20B—C20—H20C 109.5
C15—C10—N9 122.81 (16) C5—O21—C22 118.36 (14)
C11—C10—N9 117.50 (17) O21—C22—H22A 109.5
C12—C11—C10 119.92 (18) O21—C22—H22B 109.5
C12—C11—H11 120 H22A—C22—H22B 109.5
C10—C11—H11 120 O21—C22—H22C 109.5
C13—C12—C11 120.43 (17) H22A—C22—H22C 109.5
C13—C12—H12 119.8 H22B—C22—H22C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N9—H9···O17i 0.87 (2) 2.18 (2) 3.029 (2) 165.8 (17)
O16—H16···O8ii 0.88 (4) 1.84 (4) 2.710 (2) 172 (3)

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2785).

References

  1. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985. [DOI] [PubMed]
  3. Casanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324–330. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749–1755. [DOI] [PubMed]
  7. Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389–1395. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040554/is2785sup1.cif

e-67-o2865-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040554/is2785Isup2.hkl

e-67-o2865-Isup2.hkl (166.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040554/is2785Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES