Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2869. doi: 10.1107/S1600536811040426

4-Methyl­phenyl 4-bromo­benzoate

Rodolfo Moreno-Fuquen a,*, Javier Ellena b, Carlos A De Simone b
PMCID: PMC3247604  PMID: 22219909

Abstract

In the title compound, C14H11BrO2, an ester formed from the reaction of 4-methyl­phenol with 4-bromo­benzoyl­chloride, the dihedral angle between the benzene rings is 54.43 (7)°, indicating a twist in the mol­ecule. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into supra­molecular layers in the bc plane, and these are connected along the a axis by Br⋯Br contacts [3.6328 (5) Å].

Related literature

For industrial applications of ester systems, see: Gowda et al. (2007a ); Brüning et al. (2009). For related structures, see: Gowda et al. (2007b , 2008). For hydrogen bonding, see: Nardelli (1995). For halogen inter­actions, see: Ritter (2009).graphic file with name e-67-o2869-scheme1.jpg

Experimental

Crystal data

  • C14H11BrO2

  • M r = 291.13

  • Monoclinic, Inline graphic

  • a = 15.0219 (9) Å

  • b = 11.3585 (8) Å

  • c = 7.5077 (4) Å

  • β = 99.730 (4)°

  • V = 1262.58 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 293 K

  • 0.47 × 0.18 × 0.10 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.472, T max = 0.698

  • 9090 measured reflections

  • 2829 independent reflections

  • 1811 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.125

  • S = 1.01

  • 2829 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040426/tk2795sup1.cif

e-67-o2869-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040426/tk2795Isup2.hkl

e-67-o2869-Isup2.hkl (138.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040426/tk2795Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.67 3.483 (4) 147
C13—H13⋯O1ii 0.93 2.77 3.422 (4) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thank the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

Comment

This work is part of the study of the effect of substituents on the ester system. Similar work, involving ester systems with an emphasis on industrial applications has been published (Gowda et al., 2007a; Brüning et al., 2009). The molecular structure of the title compound (I) is similar to that of 4-bromophenyl benzoate (4BPB) (Gowda et al., 2008) and 4-methylphenyl 4-methylbenzoate (4MPB) (Gowda et al., 2007b). Compound (I) shows a dihedral angle of 54.43 (7)° between the mean planes of the benzene rings (Fig. 1). This dihedral angle is close to the values presented in the 4BPB and 4MPB molecules [58.43 (17) and 60.17 (7)°, respectively].

The crystal packing is stabilized by C—H···O interactions (Nardelli, 1995); Table 1. These weak interactions link the molecules into supramolecular layers in the bc plane. The layers are connected by Br···Br interactions (Ritter, 2009).

Experimental

A solution containing equimolar quantities (3.4 mmol) of 4-bromobenzoyl chloride and 4-methylphenol in acetonitrile (60 ml) was gradually heated to reflux for 2 h and then allowed to cool. At room temperature, triethylamine was added to get a solid which was poured in cold water. The solid was recrystallized from its dichlorometane solution to yield colourless crystals; M.pt. 385 (1) K.

Refinement

The H-atoms were positioned geometrically [C—H = 0.93–0.96 Å, and with Uiso(H) =1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Crystal data

C14H11BrO2 F(000) = 584
Mr = 291.13 Dx = 1.532 Mg m3
Monoclinic, P21/c Melting point: 385(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 15.0219 (9) Å Cell parameters from 9005 reflections
b = 11.3585 (8) Å θ = 2.9–27.5°
c = 7.5077 (4) Å µ = 3.24 mm1
β = 99.730 (4)° T = 293 K
V = 1262.58 (14) Å3 Prism, colourless
Z = 4 0.47 × 0.18 × 0.10 mm

Data collection

Bruker–Nonius KappaCCD diffractometer 2829 independent reflections
Radiation source: fine-focus sealed tube 1811 reflections with I > 2σ(I)
horizonally mounted graphite crystal Rint = 0.052
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 3.7°
CCD scans h = −19→19
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→10
Tmin = 0.472, Tmax = 0.698 l = −9→9
9090 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.3548P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2829 reflections Δρmax = 0.31 e Å3
156 parameters Δρmin = −0.36 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.61020 (2) 0.93326 (4) 0.00395 (6) 0.0970 (2)
C14 1.4444 (2) 0.8443 (4) 0.4571 (6) 0.1050 (13)
H14A 1.4685 0.8902 0.5615 0.158*
H14B 1.4718 0.8687 0.3564 0.158*
H14C 1.4572 0.7625 0.4817 0.158*
O2 1.06435 (14) 0.91018 (16) 0.2775 (3) 0.0640 (5)
O1 1.02822 (15) 0.7422 (2) 0.4071 (3) 0.0864 (7)
C5 0.8438 (2) 0.7772 (2) 0.2633 (4) 0.0615 (7)
H5 0.8594 0.7079 0.3270 0.074*
C1 0.7324 (2) 0.9019 (3) 0.0998 (4) 0.0631 (7)
C3 0.8867 (2) 0.9613 (2) 0.1444 (4) 0.0590 (6)
H3 0.9309 1.0156 0.1275 0.071*
C2 0.7978 (2) 0.9834 (3) 0.0749 (4) 0.0619 (7)
H2 0.7815 1.0526 0.0116 0.074*
C8 1.15716 (19) 0.8889 (2) 0.3280 (3) 0.0558 (6)
C7 1.0054 (2) 0.8281 (3) 0.3177 (4) 0.0617 (7)
C4 0.91105 (18) 0.8576 (2) 0.2403 (3) 0.0545 (6)
C6 0.7555 (2) 0.7987 (3) 0.1938 (4) 0.0663 (7)
H6 0.7111 0.7444 0.2095 0.080*
C11 1.3432 (2) 0.8623 (3) 0.4124 (4) 0.0723 (8)
C13 1.1971 (2) 0.7893 (2) 0.2718 (4) 0.0641 (7)
H13 1.1624 0.7313 0.2056 0.077*
C9 1.2087 (2) 0.9753 (3) 0.4252 (4) 0.0636 (7)
H9 1.1814 1.0422 0.4630 0.076*
C12 1.2891 (2) 0.7777 (3) 0.3156 (4) 0.0710 (8)
H12 1.3161 0.7103 0.2789 0.085*
C10 1.3008 (2) 0.9615 (3) 0.4656 (4) 0.0720 (8)
H10 1.3355 1.0202 0.5302 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0691 (3) 0.1091 (4) 0.1086 (4) 0.00332 (19) 0.00328 (19) 0.0103 (2)
C14 0.067 (2) 0.107 (3) 0.140 (3) 0.002 (2) 0.014 (2) 0.004 (3)
O2 0.0677 (12) 0.0511 (11) 0.0726 (11) 0.0013 (9) 0.0099 (9) 0.0076 (9)
O1 0.0789 (14) 0.0797 (15) 0.0998 (15) 0.0048 (12) 0.0129 (11) 0.0395 (13)
C5 0.0802 (19) 0.0442 (14) 0.0603 (14) −0.0036 (13) 0.0130 (13) 0.0073 (11)
C1 0.0668 (16) 0.0635 (17) 0.0598 (15) 0.0025 (14) 0.0127 (12) −0.0013 (13)
C3 0.0727 (17) 0.0450 (14) 0.0630 (14) −0.0011 (12) 0.0221 (13) 0.0035 (11)
C2 0.0724 (17) 0.0500 (15) 0.0656 (15) 0.0088 (14) 0.0187 (13) 0.0065 (13)
C8 0.0665 (16) 0.0492 (14) 0.0530 (13) 0.0001 (12) 0.0137 (11) 0.0047 (11)
C7 0.0760 (18) 0.0527 (15) 0.0577 (14) −0.0008 (14) 0.0145 (12) 0.0066 (13)
C4 0.0695 (16) 0.0446 (14) 0.0507 (13) 0.0012 (12) 0.0141 (11) 0.0017 (10)
C6 0.0751 (18) 0.0569 (17) 0.0677 (15) −0.0106 (14) 0.0144 (13) 0.0014 (13)
C11 0.0743 (18) 0.066 (2) 0.0790 (18) 0.0034 (15) 0.0196 (15) 0.0049 (15)
C13 0.0816 (19) 0.0510 (15) 0.0596 (14) 0.0004 (14) 0.0118 (13) −0.0032 (12)
C9 0.0733 (18) 0.0506 (15) 0.0700 (16) −0.0020 (14) 0.0212 (13) −0.0066 (13)
C12 0.086 (2) 0.0580 (17) 0.0729 (17) 0.0097 (16) 0.0240 (15) −0.0012 (14)
C10 0.078 (2) 0.0616 (18) 0.0766 (18) −0.0107 (15) 0.0145 (15) −0.0076 (14)

Geometric parameters (Å, °)

Br1—C1 1.889 (3) C3—H3 0.9300
C14—C11 1.515 (5) C2—H2 0.9300
C14—H14A 0.9600 C8—C9 1.380 (4)
C14—H14B 0.9600 C8—C13 1.380 (4)
C14—H14C 0.9600 C7—C4 1.477 (4)
O2—C7 1.355 (3) C6—H6 0.9300
O2—C8 1.402 (3) C11—C10 1.386 (5)
O1—C7 1.200 (3) C11—C12 1.383 (5)
C5—C6 1.363 (4) C13—C12 1.372 (4)
C5—C4 1.394 (4) C13—H13 0.9300
C5—H5 0.9300 C9—C10 1.375 (4)
C1—C6 1.382 (4) C9—H9 0.9300
C1—C2 1.384 (4) C12—H12 0.9300
C3—C2 1.373 (4) C10—H10 0.9300
C3—C4 1.397 (4)
C11—C14—H14A 109.5 O1—C7—C4 124.7 (3)
C11—C14—H14B 109.5 O2—C7—C4 112.1 (2)
H14A—C14—H14B 109.5 C5—C4—C3 119.0 (3)
C11—C14—H14C 109.5 C5—C4—C7 118.0 (2)
H14A—C14—H14C 109.5 C3—C4—C7 123.0 (2)
H14B—C14—H14C 109.5 C5—C6—C1 119.4 (3)
C7—O2—C8 118.6 (2) C5—C6—H6 120.3
C6—C5—C4 120.9 (3) C1—C6—H6 120.3
C6—C5—H5 119.6 C10—C11—C12 117.3 (3)
C4—C5—H5 119.6 C10—C11—C14 122.6 (3)
C6—C1—C2 120.9 (3) C12—C11—C14 120.1 (3)
C6—C1—Br1 119.9 (2) C12—C13—C8 118.5 (3)
C2—C1—Br1 119.2 (2) C12—C13—H13 120.7
C2—C3—C4 120.2 (3) C8—C13—H13 120.7
C2—C3—H3 119.9 C10—C9—C8 119.3 (3)
C4—C3—H3 119.9 C10—C9—H9 120.3
C3—C2—C1 119.6 (3) C8—C9—H9 120.3
C3—C2—H2 120.2 C13—C12—C11 122.6 (3)
C1—C2—H2 120.2 C13—C12—H12 118.7
C9—C8—C13 120.7 (3) C11—C12—H12 118.7
C9—C8—O2 117.6 (2) C9—C10—C11 121.6 (3)
C13—C8—O2 121.5 (3) C9—C10—H10 119.2
O1—C7—O2 123.3 (3) C11—C10—H10 119.2
C4—C3—C2—C1 −0.3 (4) O2—C7—C4—C3 −2.8 (4)
C6—C1—C2—C3 0.1 (4) C4—C5—C6—C1 −0.2 (4)
Br1—C1—C2—C3 179.9 (2) C2—C1—C6—C5 0.2 (4)
C7—O2—C8—C9 −128.0 (3) Br1—C1—C6—C5 −179.6 (2)
C7—O2—C8—C13 56.6 (3) C9—C8—C13—C12 0.4 (4)
C8—O2—C7—O1 6.1 (4) O2—C8—C13—C12 175.6 (2)
C8—O2—C7—C4 −174.3 (2) C13—C8—C9—C10 0.2 (4)
C6—C5—C4—C3 0.0 (4) O2—C8—C9—C10 −175.2 (2)
C6—C5—C4—C7 −179.4 (2) C8—C13—C12—C11 −0.6 (4)
C2—C3—C4—C5 0.3 (4) C10—C11—C12—C13 0.2 (5)
C2—C3—C4—C7 179.7 (2) C14—C11—C12—C13 179.8 (3)
O1—C7—C4—C5 −3.8 (4) C8—C9—C10—C11 −0.6 (5)
O2—C7—C4—C5 176.6 (2) C12—C11—C10—C9 0.4 (5)
O1—C7—C4—C3 176.7 (3) C14—C11—C10—C9 −179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.93 2.67 3.483 (4) 147.
C13—H13···O1ii 0.93 2.77 3.422 (4) 128.

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2795).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Brüning, J., Bats, J. W. & Schmidt, M. U. (2009). Acta Cryst. E65, o2468–o2469. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o4286.
  6. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3867.
  7. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771. [DOI] [PMC free article] [PubMed]
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Ritter, S. K. (2009). Sci. Technol. 87, 39–42.
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040426/tk2795sup1.cif

e-67-o2869-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040426/tk2795Isup2.hkl

e-67-o2869-Isup2.hkl (138.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040426/tk2795Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES