Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2871. doi: 10.1107/S1600536811040499

Pentyl (E)-3-(3,4-dihy­droxy­phen­yl)acrylate

Jun Wang a,*, Shuangshuang Gu a, Leixia Zhang a, Fuan Wu a,b, Xijie Guo a,b
PMCID: PMC3247606  PMID: 22219911

Abstract

In the mol­ecule of the title compound, C14H18O4, the C=C double bond is in an E configuration. The mol­ecule is almost planar (r.m.s. deviation of all non-H atoms = 0.04 Å). An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, inter­molecular O—H⋯O inter­actions link the mol­ecules into ribbons extending in [110].

Related literature

For general background to the biological activity of caffeic acid and its esters, see: Uwai et al. (2008); Buzzi et al. (2009); For the preparation, see: Xia et al. (2006); Son et al. (2011). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o2871-scheme1.jpg

Experimental

Crystal data

  • C14H18O4

  • M r = 250.28

  • Triclinic, Inline graphic

  • a = 5.3070 (11) Å

  • b = 10.567 (2) Å

  • c = 11.816 (2) Å

  • α = 90.96 (3)°

  • β = 91.84 (3)°

  • γ = 98.60 (3)°

  • V = 654.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.973, T max = 0.991

  • 2703 measured reflections

  • 2419 independent reflections

  • 1627 reflections with I > 2σ(I)

  • R int = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.169

  • S = 1.00

  • 2419 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040499/gw2109sup1.cif

e-67-o2871-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040499/gw2109Isup2.hkl

e-67-o2871-Isup2.hkl (118.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040499/gw2109Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2 0.82 2.30 2.738 (2) 114
O1—H1B⋯O2i 0.82 2.15 2.840 (2) 142
O2—H2A⋯O3ii 0.82 1.98 2.800 (2) 173
C5—H5A⋯O3ii 0.93 2.52 3.230 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was sponsored by the Qing Lan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province (BK2009213), the College Natural Science Research Project of Jiangsu Province (08KJB530002), the Science and Technology Support Program of Jiangsu Province (BE2010419), the Start Project for Introducing Talent of Jiangsu University of Science and Technology (35211002), the Pre-research for NSFC Project of Jiangsu University of Science and Technology (33201002) and the earmarked fund for Modern Agro-industry Technology Research Systems.

supplementary crystallographic information

Comment

Caffeic acid and its esters have been a research hot spot for a long time. These compounds are known to show a variety of biological effects such as anti-tumor, anti-oxidant, and anti-inflammatory activities (Uwai et al., 2008; Buzzi et al., 2009). As a part of our studies into the synthesis of caffeic acid derivatives, the title compound (1) pentyl (E)-3-(3,4-dihydroxyphenyl)acrylate was synthesized (Xia et al. (2006); Son et al. (2011)). We report herein the crystal structure of the title compound.

The molecule of (I) has an E configuration (Fig. 1); All non-H atoms of (I) are almost coplanar, with a root mean square deviating from the least-squares plane of 0.04 A°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure, hydroxy groups contribute to intermolecular O—H···O interactions (Table 1) link the molecules into ribbons extended in the [110] direction (Fig. 2), in which they may be effective in the stabilization of thestructure. On the other hand, the intramolecular O—H···O H-bond also contribute to the stability of the molecular configuration (Fig. 1 and Table 1).

Experimental

Esterification of caffeic acid with amyl alcohol was performed in a column (inner diameter= 15 mm, length = 200 mm). Caffeic acid (8.95 g, 0.05 mol) was dissolved in amyl alcohol (100 ml). The mixture was stirred at 80°C for 60 minutes and fed from the top of the reactor with syringe pumps. The feed rate of the mixture was fixed at 10.0 ml/h. Cation exchange resin CD-552 particles(5 g) and molecular sieve(5 g) were packed into the middle of the reactor and glass beads of 2 mm in diameter were loaded into the rest of the column. The reaction temperature continued at 90°C for 20 h. The mixture was evaporated to dryness and followed by the addition of ethanol and extracted with chloroform three times. The chloroform extract was dried over evaporated to give a solid residue, and dissolved in ethanol/petroleum ether (1:1) to crystal. The solution was filtered and concentrated to yield a brown crystalline product (5.3 g, 59.2%). Recrystallization from ethanol gave colourless crystal.

Refinement

The H atoms were placed in calculated positions (O—H = 0.82 A ° and C—H = 0.93–0.97 A °) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(O,C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.

Fig. 2.

Fig. 2.

A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H18O4 Z = 2
Mr = 250.28 F(000) = 268
Triclinic, P1 Dx = 1.270 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.3070 (11) Å Cell parameters from 25 reflections
b = 10.567 (2) Å θ = 9–13°
c = 11.816 (2) Å µ = 0.09 mm1
α = 90.96 (3)° T = 293 K
β = 91.84 (3)° Block, colourless
γ = 98.60 (3)° 0.30 × 0.20 × 0.10 mm
V = 654.7 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1627 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
graphite θmax = 25.4°, θmin = 1.7°
ω/2θ scans h = 0→6
Absorption correction: ψ scan (North et al., 1968) k = −12→12
Tmin = 0.973, Tmax = 0.991 l = −14→14
2703 measured reflections 3 standard reflections every 200 reflections
2419 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.040P] where P = (Fo2 + 2Fc2)/3
2419 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.2441 (3) 1.39149 (14) 0.11914 (14) 0.0617 (5)
H1B −0.1743 1.4410 0.0731 0.093*
C1 −0.1068 (4) 1.08131 (19) 0.20524 (17) 0.0469 (5)
H1A −0.1712 1.0179 0.2547 0.056*
O2 0.1576 (3) 1.36636 (13) −0.01491 (12) 0.0535 (4)
H2A 0.2656 1.3441 −0.0559 0.080*
C2 −0.2175 (4) 1.1903 (2) 0.19717 (18) 0.0506 (6)
H2B −0.3549 1.2002 0.2416 0.061*
C3 −0.1266 (4) 1.28540 (18) 0.12364 (17) 0.0435 (5)
O3 0.4807 (3) 0.73067 (15) 0.14536 (14) 0.0699 (6)
O4 0.2176 (3) 0.65259 (13) 0.27822 (13) 0.0578 (5)
C4 0.0776 (4) 1.26997 (18) 0.05777 (16) 0.0408 (5)
C5 0.1902 (4) 1.16118 (18) 0.06704 (16) 0.0408 (5)
H5A 0.3293 1.1521 0.0233 0.049*
C6 0.0999 (4) 1.06446 (18) 0.14062 (16) 0.0396 (5)
C7 0.2247 (4) 0.95104 (18) 0.14637 (17) 0.0453 (5)
H7A 0.3589 0.9487 0.0980 0.054*
C8 0.1716 (4) 0.85117 (19) 0.21148 (17) 0.0493 (6)
H8A 0.0415 0.8506 0.2624 0.059*
C9 0.3082 (4) 0.74206 (19) 0.20677 (17) 0.0457 (5)
C10 0.3335 (4) 0.53739 (19) 0.28150 (19) 0.0519 (6)
H10A 0.5153 0.5582 0.2982 0.062*
H10B 0.3079 0.4919 0.2091 0.062*
C11 0.2072 (5) 0.4569 (2) 0.37279 (18) 0.0525 (6)
H11A 0.0261 0.4364 0.3542 0.063*
H11B 0.2270 0.5057 0.4437 0.063*
C12 0.3173 (4) 0.3342 (2) 0.38791 (18) 0.0512 (6)
H12A 0.2967 0.2858 0.3169 0.061*
H12B 0.4987 0.3553 0.4055 0.061*
C13 0.1962 (5) 0.2508 (2) 0.4799 (2) 0.0664 (7)
H13A 0.0162 0.2262 0.4609 0.080*
H13B 0.2109 0.2998 0.5506 0.080*
C14 0.3177 (7) 0.1313 (3) 0.4962 (3) 0.0930 (10)
H14A 0.2336 0.0813 0.5549 0.140*
H14B 0.4949 0.1551 0.5172 0.140*
H14C 0.3016 0.0818 0.4268 0.140*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0648 (10) 0.0488 (9) 0.0805 (11) 0.0307 (8) 0.0265 (8) 0.0173 (8)
C1 0.0505 (13) 0.0405 (11) 0.0512 (12) 0.0086 (9) 0.0125 (10) 0.0095 (9)
O2 0.0618 (10) 0.0405 (8) 0.0644 (9) 0.0217 (7) 0.0251 (8) 0.0162 (7)
C2 0.0468 (12) 0.0504 (13) 0.0587 (13) 0.0164 (10) 0.0180 (10) 0.0057 (10)
C3 0.0438 (12) 0.0371 (11) 0.0522 (12) 0.0139 (9) 0.0048 (9) 0.0010 (9)
O3 0.0806 (12) 0.0553 (10) 0.0841 (12) 0.0321 (8) 0.0460 (10) 0.0256 (8)
O4 0.0741 (11) 0.0403 (8) 0.0658 (10) 0.0227 (7) 0.0301 (8) 0.0172 (7)
C4 0.0456 (11) 0.0339 (10) 0.0439 (11) 0.0081 (9) 0.0059 (9) 0.0039 (8)
C5 0.0408 (11) 0.0383 (11) 0.0456 (11) 0.0116 (9) 0.0091 (9) 0.0025 (9)
C6 0.0427 (11) 0.0342 (10) 0.0430 (10) 0.0089 (8) 0.0040 (9) 0.0008 (8)
C7 0.0488 (12) 0.0400 (11) 0.0492 (11) 0.0114 (9) 0.0116 (10) 0.0039 (9)
C8 0.0573 (13) 0.0371 (11) 0.0569 (13) 0.0147 (10) 0.0189 (11) 0.0065 (10)
C9 0.0515 (13) 0.0392 (11) 0.0482 (11) 0.0099 (9) 0.0112 (10) 0.0048 (9)
C10 0.0640 (14) 0.0362 (11) 0.0601 (13) 0.0190 (10) 0.0157 (11) 0.0082 (10)
C11 0.0644 (15) 0.0430 (12) 0.0534 (12) 0.0151 (10) 0.0181 (11) 0.0072 (10)
C12 0.0580 (14) 0.0430 (12) 0.0555 (13) 0.0142 (10) 0.0090 (11) 0.0084 (10)
C13 0.0863 (19) 0.0551 (14) 0.0610 (14) 0.0161 (13) 0.0184 (13) 0.0158 (11)
C14 0.126 (3) 0.0666 (17) 0.095 (2) 0.0349 (17) 0.0191 (19) 0.0386 (15)

Geometric parameters (Å, °)

O1—C3 1.363 (2) C7—H7A 0.9300
O1—H1B 0.8200 C8—C9 1.452 (3)
C1—C2 1.372 (3) C8—H8A 0.9300
C1—C6 1.388 (3) C10—C11 1.498 (3)
C1—H1A 0.9300 C10—H10A 0.9700
O2—C4 1.371 (2) C10—H10B 0.9700
O2—H2A 0.8200 C11—C12 1.512 (3)
C2—C3 1.382 (3) C11—H11A 0.9700
C2—H2B 0.9300 C11—H11B 0.9700
C3—C4 1.382 (3) C12—C13 1.509 (3)
O3—C9 1.205 (2) C12—H12A 0.9700
O4—C9 1.324 (2) C12—H12B 0.9700
O4—C10 1.444 (2) C13—C14 1.513 (3)
C4—C5 1.377 (3) C13—H13A 0.9700
C5—C6 1.393 (3) C13—H13B 0.9700
C5—H5A 0.9300 C14—H14A 0.9600
C6—C7 1.455 (3) C14—H14B 0.9600
C7—C8 1.318 (3) C14—H14C 0.9600
C3—O1—H1B 109.5 O4—C10—C11 106.74 (16)
C2—C1—C6 120.89 (18) O4—C10—H10A 110.4
C2—C1—H1A 119.6 C11—C10—H10A 110.4
C6—C1—H1A 119.6 O4—C10—H10B 110.4
C4—O2—H2A 109.5 C11—C10—H10B 110.4
C1—C2—C3 120.64 (18) H10A—C10—H10B 108.6
C1—C2—H2B 119.7 C10—C11—C12 112.26 (17)
C3—C2—H2B 119.7 C10—C11—H11A 109.2
O1—C3—C2 118.08 (17) C12—C11—H11A 109.2
O1—C3—C4 122.54 (18) C10—C11—H11B 109.2
C2—C3—C4 119.38 (18) C12—C11—H11B 109.2
C9—O4—C10 117.71 (15) H11A—C11—H11B 107.9
O2—C4—C5 123.18 (17) C13—C12—C11 113.87 (18)
O2—C4—C3 116.98 (17) C13—C12—H12A 108.8
C5—C4—C3 119.85 (18) C11—C12—H12A 108.8
C4—C5—C6 121.30 (17) C13—C12—H12B 108.8
C4—C5—H5A 119.4 C11—C12—H12B 108.8
C6—C5—H5A 119.4 H12A—C12—H12B 107.7
C1—C6—C5 117.94 (18) C12—C13—C14 112.6 (2)
C1—C6—C7 123.06 (18) C12—C13—H13A 109.1
C5—C6—C7 119.01 (17) C14—C13—H13A 109.1
C8—C7—C6 128.16 (19) C12—C13—H13B 109.1
C8—C7—H7A 115.9 C14—C13—H13B 109.1
C6—C7—H7A 115.9 H13A—C13—H13B 107.8
C7—C8—C9 122.58 (19) C13—C14—H14A 109.5
C7—C8—H8A 118.7 C13—C14—H14B 109.5
C9—C8—H8A 118.7 H14A—C14—H14B 109.5
O3—C9—O4 122.77 (19) C13—C14—H14C 109.5
O3—C9—C8 125.58 (19) H14A—C14—H14C 109.5
O4—C9—C8 111.64 (17) H14B—C14—H14C 109.5
C6—C1—C2—C3 0.5 (3) C4—C5—C6—C7 179.50 (18)
C1—C2—C3—O1 179.97 (19) C1—C6—C7—C8 −1.5 (4)
C1—C2—C3—C4 0.1 (3) C5—C6—C7—C8 178.6 (2)
O1—C3—C4—O2 −0.8 (3) C6—C7—C8—C9 178.43 (19)
C2—C3—C4—O2 179.06 (18) C10—O4—C9—O3 0.1 (3)
O1—C3—C4—C5 179.26 (18) C10—O4—C9—C8 179.17 (18)
C2—C3—C4—C5 −0.8 (3) C7—C8—C9—O3 0.3 (4)
O2—C4—C5—C6 −178.85 (17) C7—C8—C9—O4 −178.7 (2)
C3—C4—C5—C6 1.0 (3) C9—O4—C10—C11 176.82 (18)
C2—C1—C6—C5 −0.4 (3) O4—C10—C11—C12 −178.17 (18)
C2—C1—C6—C7 179.72 (19) C10—C11—C12—C13 179.56 (19)
C4—C5—C6—C1 −0.4 (3) C11—C12—C13—C14 −177.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1B···O2 0.82 2.30 2.738 (2) 114
O1—H1B···O2i 0.82 2.15 2.840 (2) 142
O2—H2A···O3ii 0.82 1.98 2.800 (2) 173
C5—H5A···O3ii 0.93 2.52 3.230 (3) 133

Symmetry codes: (i) −x, −y+3, −z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2109).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Buzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596–4602. [DOI] [PubMed]
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Son, S. M., Kimura, H. & Kusakabe, K. (2011). Bioresour. Technol. 102, 2130–2132. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Uwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795–7803. [DOI] [PubMed]
  10. Xia, C.-N., Hu, W.-X. & Zhou, W. (2006). Acta Cryst. E62, o3900–o3901.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040499/gw2109sup1.cif

e-67-o2871-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040499/gw2109Isup2.hkl

e-67-o2871-Isup2.hkl (118.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040499/gw2109Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES