Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2872. doi: 10.1107/S1600536811040505

2-Amino-4-phenyl-5,6-dihydro­benzo[h]quinoline-3-carbonitrile–3-amino-1-phenyl-9,10-dihydro­phenanthrene-2,4-dicarbonitrile (5/3)

Abdullah M Asiri a,b, Abdulrahman O Al-Youbi a, Hassan M Faidallah a, Seik Weng Ng c,a,*
PMCID: PMC3247607  PMID: 22219912

Abstract

The asymmetric unit of the 5:3 title co-crystal of 2-amino-4-phenyl-5,6-dihydro­benzo[h]quinoline-3-carbonitrile and 3-amino-1-phenyl-9,10-dihydro­phenanthrene-2,4-dicarbonitrile, 0.625C20H15N3.0.375C22H15N3, has the atoms of the fused-ring system and those of the amino, cyano and phenyl substitutents overlapped. The fused-ring system is buckled owing to the ethyl­ene linkage in the central ring, the two flanking aromatic rings being twisted by 20.1 (1)°. This ethyl­ene portion is disordered over two positions in a 1:1 ratio. The phenyl ring is twisted by 69.5 (1)° relative to the amino- and cyano-bearing aromatic ring. In the crystal, two mol­ecules are linked by an N—H⋯N hydrogen bond, generating a a helical chain along [010].

Related literature

For the synthesis, see: Aly et al. (1991); Paul et al. (1998). For related structures, see: Asiri et al. (2011a ,b ).graphic file with name e-67-o2872-scheme1.jpg

Experimental

Crystal data

  • 0.625C20H15N3·0.375C22H15N3

  • M r = 306.36

  • Orthorhombic, Inline graphic

  • a = 6.9611 (2) Å

  • b = 12.6093 (2) Å

  • c = 17.4933 (3) Å

  • V = 1535.47 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.835, T max = 0.988

  • 6293 measured reflections

  • 1794 independent reflections

  • 1707 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.119

  • S = 1.05

  • 1794 reflections

  • 240 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040505/zs2145sup1.cif

e-67-o2872-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040505/zs2145Isup2.hkl

e-67-o2872-Isup2.hkl (88.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040505/zs2145Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N3i 0.88 (1) 2.37 (2) 3.175 (2) 152 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

2-Amino-4-phenyl-5,6-dihydrobenzoquinoline-3-carbonitrile is synthesized from the reaction of the α-substituted cinnamonitrile, C6H5CH═C(CN)2, with α-tetralone in a reaction that is catalyzed by ammonium acetate (Aly et al., 1991). The synthesis when conducted under microwave irradiation leads to an improved yield (Paul et al., 1998). In previous studies, we obtained instead di-carbonitrile substituted dihydrophenanthrenes (3-amino-1-(4-methoxyphenyl)-9,10- dihydrophenanthrene-2,4-dicarbonitrile and 3-amino-1-(2H-1,3-benzodioxol-5-yl)- 9,10-dihydrophenanthrene-2,4-dicarbonitrile) with 4-methoxybenzaldehyde and piperonaldehyde in syntheses that differed slightly from the reported ones as we used substituted benzaldehydes, α-tetralone and ethyl cyanoacetate along with a molar excess of ammonium acetate (Asiri et al., 2011a; 2011b).

In this study, the reaction of benzaldehyde, α-tetralone and ethyl cyanoacetate yielded the co-crystal of 2-amino-4-phenyl-5,6-dihydrobenzoquinoline-3-carbonitrile (C20H15N3) and 3-amino-1-phenyl-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C22H15N3), with the two components present in a 5: 3 molar ratio (Scheme I). The fused-ring system is buckled owing to the ethylene linkage in the central ring with the two flanking aromatic rings twisted by 20.1 (1)°. Relative to the amino- and cyano-bearing aromatic ring, the phenyl ring is twisted by 69.5 (1) ° (Fig. 1 and Fig. 2). Two molecules are linked by an N—H···N hydrogen bond to generate a helical chain (Table 1 and Fig. 3). The ethylene portion is disordered over two positions in a 1:1 ratio.

Experimental

A mixture of benzaldehyde (1.06 g,10 mmol), α-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.13 g, 10 mmol) and ammonium acetate (6.16 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The mixture was allowed to cool and the precipitate that formed was filtered, washed with water, dried and recrystallized from DMF.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H = 0.95–0.99 Å; Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H = 0.88±0.01 Å and with their isotropic displacement parameters refined.

The crystal is a co-crystal of 2-amino-4-phenyl-5,6-dihydrobenzoquinoline-3-carbonitrile (C20H15N3) and 3-amino-1-phenyl-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C22H15N3). The first component is a dihydrobenzoquinoline and has only one cyano substituent. The second component is a dihydrophenanthrene with two cyano substituents. The two-coordinate N atom of the first molecule occupies the same site as the three-coordinate C atom of the second molecule. As the occupancy refined to an almost 5:3 ratio, the occupancy was then fixed as this ratio. The ethylene –CH2CH2– portion (whose atoms lie on general positions) is disordered over two sites. The occupancy could not be refined, and was fixed as 1:1. The 1,2-connected carbon-carbon distances were restrained to 1.54±0.01 Å and the 1,3-related ones to 2.51±0.01 Å. The displacement parameters of the primed atoms were set to those of the unprimed ones, and the were restrained to be nearly isotropic. Despite the use of low temperature, copper radiation, long exposure times and a large number of redundant reflections, the Flack parameter could not be refined. 1252 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C20H15N3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Thermal ellipsoid plot (Barbour, 2001) of C22H15N3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 3.

Fig. 3.

Thermal ellipsoid plot (Barbour, 2001) of C20H15N3 (62.5% component) and C22H15N3 (37.5% component) related by twofold screw axial symmetry. For symmetry code (i), see Table 1.

Crystal data

0.625C20H15N3·0.375C22H15N3 F(000) = 642
Mr = 306.36 Dx = 1.325 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2ab Cell parameters from 3717 reflections
a = 6.9611 (2) Å θ = 3.5–74.3°
b = 12.6093 (2) Å µ = 0.62 mm1
c = 17.4933 (3) Å T = 100 K
V = 1535.47 (6) Å3 Plate, brown-orange
Z = 4 0.30 × 0.20 × 0.02 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1794 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1707 reflections with I > 2σ(I)
Mirror Rint = 0.018
Detector resolution: 10.4041 pixels mm-1 θmax = 74.5°, θmin = 4.3°
ω scans h = −8→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −13→15
Tmin = 0.835, Tmax = 0.988 l = −21→20
6293 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.2871P] where P = (Fo2 + 2Fc2)/3
1794 reflections (Δ/σ)max = 0.001
240 parameters Δρmax = 0.19 e Å3
24 restraints Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.9898 (3) 0.26050 (14) 1.05516 (10) 0.0294 (4) 0.625
C1' 0.9898 (3) 0.26050 (14) 1.05516 (10) 0.0294 (4) 0.375
N2 1.0082 (3) 0.28041 (13) 1.18789 (10) 0.0339 (4)
H1 1.035 (5) 0.3483 (10) 1.1827 (17) 0.052 (8)*
H2 1.031 (4) 0.254 (2) 1.2335 (9) 0.045 (8)*
N3 0.9475 (4) 0.02407 (14) 1.26992 (10) 0.0396 (5)
C1 0.9186 (4) −0.07603 (16) 1.08021 (11) 0.0369 (5)
C2 1.0684 (4) −0.13801 (17) 1.10772 (12) 0.0414 (6)
H2A 1.1883 −0.1063 1.1200 0.050*
C3 1.0422 (5) −0.24706 (17) 1.11721 (12) 0.0463 (7)
H3 1.1450 −0.2896 1.1355 0.056*
C4 0.8687 (5) −0.29307 (17) 1.10017 (12) 0.0500 (8)
H4 0.8513 −0.3671 1.1075 0.060*
C5 0.7187 (5) −0.23191 (18) 1.07229 (14) 0.0521 (7)
H5 0.5990 −0.2641 1.0603 0.063*
C6 0.7439 (5) −0.12301 (18) 1.06183 (13) 0.0478 (6)
H6 0.6418 −0.0811 1.0422 0.057*
C7 0.9453 (4) 0.04111 (15) 1.06991 (11) 0.0336 (5)
C8 0.9536 (4) 0.08663 (16) 0.99730 (11) 0.0391 (6)
C9 0.9790 (10) 0.0170 (5) 0.9251 (4) 0.0390 (15) 0.50
H9A 1.0343 −0.0525 0.9396 0.047* 0.50
H9B 0.8524 0.0043 0.9010 0.047* 0.50
C10 1.1119 (9) 0.0727 (5) 0.8684 (3) 0.0440 (15) 0.50
H10A 1.1216 0.0310 0.8206 0.053* 0.50
H10B 1.2422 0.0801 0.8905 0.053* 0.50
C9' 0.9024 (9) 0.0270 (5) 0.9245 (4) 0.0390 (15) 0.50
H9'C 0.9220 −0.0500 0.9322 0.047* 0.50
H9'D 0.7656 0.0390 0.9117 0.047* 0.50
C10' 1.0290 (10) 0.0659 (5) 0.8592 (3) 0.0440 (15) 0.50
H10C 1.1628 0.0426 0.8683 0.053* 0.50
H10D 0.9847 0.0335 0.8108 0.053* 0.50
C11 1.0247 (5) 0.18419 (19) 0.85163 (13) 0.0485 (7)
C12 1.0305 (5) 0.2290 (2) 0.77912 (15) 0.0561 (7)
H12 1.0608 0.1859 0.7362 0.067*
C13 0.9929 (5) 0.3351 (3) 0.76887 (17) 0.0606 (8)
H13 0.9963 0.3651 0.7191 0.073*
C14 0.9497 (5) 0.3981 (3) 0.8318 (2) 0.0699 (10)
H14 0.9246 0.4716 0.8250 0.084*
C15 0.9431 (5) 0.3542 (2) 0.90409 (18) 0.0593 (9)
H15 0.9134 0.3976 0.9469 0.071*
C16 0.9798 (4) 0.24669 (16) 0.91469 (12) 0.0355 (5)
C17 0.9738 (3) 0.19760 (15) 0.99194 (12) 0.0331 (5)
C18 0.9871 (3) 0.21628 (14) 1.12653 (11) 0.0281 (4)
C19 0.9622 (3) 0.10550 (15) 1.13457 (11) 0.0291 (4)
C20 0.9531 (4) 0.05995 (15) 1.20987 (11) 0.0308 (5)
N4 1.0072 (11) 0.4629 (4) 1.0526 (3) 0.0471 (15) 0.375
C21 0.9965 (10) 0.3721 (4) 1.0492 (3) 0.0337 (12) 0.375

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0427 (10) 0.0207 (8) 0.0249 (8) 0.0010 (8) 0.0045 (8) 0.0015 (7)
C1' 0.0427 (10) 0.0207 (8) 0.0249 (8) 0.0010 (8) 0.0045 (8) 0.0015 (7)
N2 0.0607 (12) 0.0210 (7) 0.0200 (7) −0.0002 (9) −0.0011 (8) −0.0010 (6)
N3 0.0672 (14) 0.0253 (8) 0.0263 (8) 0.0000 (9) −0.0015 (9) 0.0044 (7)
C1 0.0703 (16) 0.0214 (9) 0.0189 (8) −0.0041 (10) −0.0016 (10) 0.0008 (7)
C2 0.0705 (16) 0.0260 (10) 0.0277 (9) 0.0011 (11) −0.0012 (11) −0.0002 (8)
C3 0.087 (2) 0.0257 (10) 0.0259 (10) 0.0058 (12) 0.0027 (12) 0.0009 (8)
C4 0.106 (2) 0.0201 (9) 0.0239 (10) −0.0060 (13) 0.0035 (12) 0.0016 (8)
C5 0.089 (2) 0.0300 (10) 0.0370 (12) −0.0174 (13) −0.0096 (13) 0.0029 (10)
C6 0.0785 (18) 0.0283 (10) 0.0365 (11) −0.0092 (12) −0.0159 (13) 0.0053 (9)
C7 0.0539 (13) 0.0211 (9) 0.0258 (9) −0.0025 (9) −0.0007 (10) 0.0002 (8)
C8 0.0704 (16) 0.0228 (9) 0.0241 (9) −0.0043 (11) −0.0002 (11) 0.0017 (8)
C9 0.069 (4) 0.0245 (14) 0.0237 (10) 0.001 (3) −0.002 (3) 0.0004 (10)
C10 0.082 (5) 0.0283 (13) 0.0211 (15) −0.013 (3) −0.001 (2) −0.0071 (11)
C9' 0.069 (4) 0.0245 (14) 0.0237 (10) 0.001 (3) −0.002 (3) 0.0004 (10)
C10' 0.082 (5) 0.0283 (13) 0.0211 (15) −0.013 (3) −0.001 (2) −0.0071 (11)
C11 0.0804 (19) 0.0357 (11) 0.0293 (11) −0.0080 (14) 0.0008 (12) 0.0083 (9)
C12 0.080 (2) 0.0562 (15) 0.0321 (12) −0.0134 (16) 0.0003 (13) 0.0126 (11)
C13 0.0538 (14) 0.0720 (19) 0.0559 (16) 0.0019 (16) 0.0020 (14) 0.0404 (15)
C14 0.0675 (19) 0.0549 (16) 0.087 (2) 0.0299 (16) 0.0384 (18) 0.0452 (16)
C15 0.0674 (18) 0.0408 (13) 0.0698 (18) 0.0201 (14) 0.0372 (16) 0.0274 (13)
C16 0.0429 (11) 0.0291 (10) 0.0347 (11) 0.0004 (10) 0.0053 (9) 0.0096 (9)
C17 0.0456 (11) 0.0240 (9) 0.0297 (10) 0.0003 (10) 0.0041 (10) 0.0026 (8)
C18 0.0405 (11) 0.0215 (8) 0.0224 (9) 0.0005 (9) 0.0001 (8) −0.0002 (7)
C19 0.0432 (11) 0.0224 (9) 0.0218 (9) −0.0005 (9) 0.0001 (9) 0.0028 (7)
C20 0.0480 (12) 0.0195 (8) 0.0249 (9) −0.0013 (9) −0.0017 (9) −0.0011 (7)
N4 0.094 (5) 0.021 (2) 0.026 (2) −0.002 (3) 0.001 (3) −0.0014 (18)
C21 0.055 (3) 0.027 (3) 0.018 (2) 0.003 (3) 0.005 (2) −0.0001 (19)

Geometric parameters (Å, °)

N1—C17 1.366 (3) C9—H9B 0.9900
N1—C18 1.367 (2) C10—C11 1.560 (7)
N2—C18 1.352 (2) C10—H10A 0.9900
N2—H1 0.88 (1) C10—H10B 0.9900
N2—H2 0.88 (1) C9'—C10' 1.523 (7)
N3—C20 1.144 (3) C9'—H9'C 0.9900
C1—C6 1.391 (4) C9'—H9'D 0.9900
C1—C2 1.389 (4) C10'—C11 1.498 (7)
C1—C7 1.499 (3) C10'—H10C 0.9900
C2—C3 1.397 (3) C10'—H10D 0.9900
C2—H2A 0.9500 C11—C12 1.389 (3)
C3—C4 1.373 (4) C11—C16 1.391 (3)
C3—H3 0.9500 C12—C13 1.375 (4)
C4—C5 1.387 (4) C12—H12 0.9500
C4—H4 0.9500 C13—C14 1.390 (5)
C5—C6 1.396 (3) C13—H13 0.9500
C5—H5 0.9500 C14—C15 1.382 (4)
C6—H6 0.9500 C14—H14 0.9500
C7—C19 1.397 (3) C15—C16 1.392 (3)
C7—C8 1.395 (3) C15—H15 0.9500
C8—C17 1.410 (3) C16—C17 1.487 (3)
C8—C9' 1.521 (7) C18—C19 1.415 (2)
C8—C9 1.548 (7) C19—C20 1.438 (3)
C9—C10 1.527 (7) N4—C21 1.149 (7)
C9—H9A 0.9900
C17—N1—C18 120.11 (16) C10'—C9'—C8 109.5 (4)
C18—N2—H1 122 (2) C10'—C9'—H9'C 109.8
C18—N2—H2 120.8 (19) C8—C9'—H9'C 109.8
H1—N2—H2 115 (3) C10'—C9'—H9'D 109.8
C6—C1—C2 119.8 (2) C8—C9'—H9'D 109.8
C6—C1—C7 120.0 (2) H9'C—C9'—H9'D 108.2
C2—C1—C7 120.2 (2) C11—C10'—C9' 112.1 (5)
C1—C2—C3 119.8 (3) C11—C10'—H10C 109.2
C1—C2—H2A 120.1 C9'—C10'—H10C 109.2
C3—C2—H2A 120.1 C11—C10'—H10D 109.2
C4—C3—C2 120.3 (3) C9'—C10'—H10D 109.2
C4—C3—H3 119.8 H10C—C10'—H10D 107.9
C2—C3—H3 119.8 C12—C11—C16 120.0 (2)
C3—C4—C5 120.2 (2) C12—C11—C10' 119.0 (3)
C3—C4—H4 119.9 C16—C11—C10' 119.9 (3)
C5—C4—H4 119.9 C12—C11—C10 121.8 (3)
C4—C5—C6 119.9 (3) C16—C11—C10 116.7 (3)
C4—C5—H5 120.0 C13—C12—C11 120.6 (3)
C6—C5—H5 120.0 C13—C12—H12 119.7
C1—C6—C5 119.9 (3) C11—C12—H12 119.7
C1—C6—H6 120.1 C12—C13—C14 119.6 (2)
C5—C6—H6 120.1 C12—C13—H13 120.2
C19—C7—C8 119.64 (17) C14—C13—H13 120.2
C19—C7—C1 119.05 (17) C15—C14—C13 120.1 (3)
C8—C7—C1 121.31 (17) C15—C14—H14 119.9
C7—C8—C17 118.24 (18) C13—C14—H14 119.9
C7—C8—C9' 123.3 (3) C14—C15—C16 120.4 (3)
C17—C8—C9' 117.3 (3) C14—C15—H15 119.8
C7—C8—C9 120.9 (3) C16—C15—H15 119.8
C17—C8—C9 119.8 (3) C15—C16—C11 119.2 (2)
C10—C9—C8 109.7 (5) C15—C16—C17 121.4 (2)
C10—C9—H9A 109.7 C11—C16—C17 119.40 (18)
C8—C9—H9A 109.7 N1—C17—C8 122.06 (18)
C10—C9—H9B 109.7 N1—C17—C16 119.48 (18)
C8—C9—H9B 109.7 C8—C17—C16 118.46 (18)
H9A—C9—H9B 108.2 N2—C18—N1 118.65 (16)
C9—C10—C11 107.5 (5) N2—C18—C19 121.67 (16)
C9—C10—H10A 110.2 N1—C18—C19 119.68 (17)
C11—C10—H10A 110.2 C7—C19—C18 120.24 (17)
C9—C10—H10B 110.2 C7—C19—C20 120.37 (17)
C11—C10—H10B 110.2 C18—C19—C20 119.39 (17)
H10A—C10—H10B 108.5 N3—C20—C19 179.3 (3)
C6—C1—C2—C3 −0.4 (3) C10—C11—C12—C13 −165.4 (4)
C7—C1—C2—C3 179.9 (2) C11—C12—C13—C14 0.4 (5)
C1—C2—C3—C4 −0.6 (3) C12—C13—C14—C15 −0.5 (5)
C2—C3—C4—C5 1.0 (4) C13—C14—C15—C16 0.1 (5)
C3—C4—C5—C6 −0.3 (4) C14—C15—C16—C11 0.5 (5)
C2—C1—C6—C5 1.1 (4) C14—C15—C16—C17 179.9 (3)
C7—C1—C6—C5 −179.3 (2) C12—C11—C16—C15 −0.7 (5)
C4—C5—C6—C1 −0.7 (4) C10'—C11—C16—C15 −168.7 (4)
C6—C1—C7—C19 110.6 (3) C10—C11—C16—C15 165.6 (3)
C2—C1—C7—C19 −69.8 (3) C12—C11—C16—C17 179.9 (3)
C6—C1—C7—C8 −69.5 (3) C10'—C11—C16—C17 11.8 (5)
C2—C1—C7—C8 110.1 (3) C10—C11—C16—C17 −13.8 (4)
C19—C7—C8—C17 −1.7 (4) C18—N1—C17—C8 0.2 (4)
C1—C7—C8—C17 178.4 (2) C18—N1—C17—C16 −179.2 (2)
C19—C7—C8—C9' −169.0 (4) C7—C8—C17—N1 1.5 (4)
C1—C7—C8—C9' 11.0 (5) C9'—C8—C17—N1 169.6 (3)
C19—C7—C8—C9 166.8 (4) C9—C8—C17—N1 −167.1 (4)
C1—C7—C8—C9 −13.1 (5) C7—C8—C17—C16 −179.1 (2)
C7—C8—C9—C10 −141.5 (4) C9'—C8—C17—C16 −11.0 (4)
C17—C8—C9—C10 26.9 (6) C9—C8—C17—C16 12.3 (5)
C9'—C8—C9—C10 115.4 (13) C15—C16—C17—N1 −19.7 (4)
C8—C9—C10—C11 −55.9 (6) C11—C16—C17—N1 159.7 (2)
C7—C8—C9'—C10' −146.4 (4) C15—C16—C17—C8 160.9 (3)
C17—C8—C9'—C10' 46.2 (6) C11—C16—C17—C8 −19.7 (4)
C9—C8—C9'—C10' −56.5 (11) C17—N1—C18—N2 178.3 (2)
C8—C9'—C10'—C11 −52.0 (6) C17—N1—C18—C19 −1.8 (3)
C9'—C10'—C11—C12 −143.3 (4) C8—C7—C19—C18 0.2 (4)
C9'—C10'—C11—C16 24.9 (6) C1—C7—C19—C18 −179.9 (2)
C9'—C10'—C11—C10 113.0 (11) C8—C7—C19—C20 179.7 (2)
C9—C10—C11—C12 −142.0 (4) C1—C7—C19—C20 −0.4 (3)
C9—C10—C11—C16 51.9 (5) N2—C18—C19—C7 −178.5 (2)
C9—C10—C11—C10' −52.2 (9) N1—C18—C19—C7 1.6 (3)
C16—C11—C12—C13 0.2 (5) N2—C18—C19—C20 2.0 (4)
C10'—C11—C12—C13 168.4 (4) N1—C18—C19—C20 −177.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1···N3i 0.88 (1) 2.37 (2) 3.175 (2) 152 (3)

Symmetry codes: (i) −x+2, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2145).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Aly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827–834.
  3. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438. [DOI] [PMC free article] [PubMed]
  4. Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449. [DOI] [PMC free article] [PubMed]
  5. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  6. Paul, S., Gupta, R. & Loupy, A. (1998). J. Chem. Res. (S), pp. 330–331.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040505/zs2145sup1.cif

e-67-o2872-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040505/zs2145Isup2.hkl

e-67-o2872-Isup2.hkl (88.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040505/zs2145Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES