Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2884. doi: 10.1107/S1600536811040785

(5E)-5-(2,4-Dichloro­benzyl­idene)-2-(piperidin-1-yl)-1,3-thia­zol-4(5H)-one

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Prajwal L Lobo b, D Jagadeesh Prasad b, Boja Poojary b
PMCID: PMC3247615  PMID: 22219920

Abstract

In the title compound, C15H14Cl2N2OS, the piperidine ring adopts a chair conformation. The dihedral angle between the thia­zolidine ring and the dichloro­benzene ring is 9.30 (4)°; this near coplanar conformation is stabilized by the formation of an intra­molecular C—H⋯S hydrogen bond, which generates an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming [001] chains. Weak π–π inter­actions [centroid–centroid separation = 3.5460 (5) Å] consolidate the structure.

Related literature

For details and properties of the 4-thia­zolidinone ring system, see: Lesyk & Zimenkovsky (2004); Lesyk et al. (2007); Havrylyuk et al. (2009); Ahn et al. (2006); Park et al. (2008); Geronikaki et al. (2008); Zimenkovsky et al. (2005). For ring puckering, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2884-scheme1.jpg

Experimental

Crystal data

  • C15H14Cl2N2OS

  • M r = 341.24

  • Monoclinic, Inline graphic

  • a = 28.5303 (3) Å

  • b = 7.4915 (1) Å

  • c = 15.4789 (2) Å

  • β = 116.407 (1)°

  • V = 2963.17 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 100 K

  • 0.44 × 0.25 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.783, T max = 0.928

  • 46944 measured reflections

  • 6673 independent reflections

  • 5955 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.074

  • S = 1.03

  • 6673 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040785/hb6435sup1.cif

e-67-o2884-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040785/hb6435Isup2.hkl

e-67-o2884-Isup2.hkl (320.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040785/hb6435Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯S1 0.95 2.49 3.2260 (8) 134
C4—H4A⋯O1i 0.95 2.40 3.3080 (9) 160
C15—H15A⋯O1ii 0.99 2.57 3.2778 (11) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The 4-thiazolidinone ring system is a core structure in various synthetic compounds displaying a broad spectrum of biological activities (Lesyk & Zimenkovsky, 2004), including an anticancer effect (Lesyk et al., 2007; Havrylyuk et al., 2009). The mechanisms of antitumor activity by 4-thiazolidinones and related heterocycles may be associated with their affinities to anticancer bio-targets, such as phosphatase of a regenerating liver (PRL-3) (Ahn et al., 2006; Park et al., 2008) and nonmembrane protein tyrosine phosphatase (SHP-2)(Geronikaki et al., 2008). 5-Arylidene derivatives were previously shown as the most active group of compounds with the anticancer activity among a large pool of 4-azolidone derivatives and analogs (Zimenkovsky et al., 2005). This prompted us to synthesize the title compound, (I), (Fig. 1).

The piperidine ((N2/C11–C15) ring adopts a chair conformation [Q = 0.5462 (10) Å; θ = 5.78 (10)° and φ = 206.6 (10)°; Cremer & Pople, 1975]. The central thiazolidine (S1/N1/C8–C10) ring makes dihedral angles of 21.18 (4)° and 9.30 (4)° with the terminal piperidine (N2/C11–C15) and phenyl (C1–C6) rings. The corresponding angle between the piperidine and phenyl (N2/C11–C15)/(C1–C6) rings is 13.69 (4)°. An intramolecular C1—H1A···S1 hydrogen bond generates an S(6) (Bernstein et al., 1995) ring motif.

In the crystal structure, (Fig. 2), the molecules are connected via intermolecular C—H···O (Table 1) hydrogen bonds forming one-dimensional supramolecular chains along the c-axis. The crystal structure is further stabilized by weak π–π interactions between the thiazolidine (Cg1; S1/N1/C8–C10) and phenyl (Cg3; C1–C6) rings [Cg1···Cg3 = 3.5460 (5) Å; 1/2-x, 3/2-y, 1-z].

Experimental

An equimolar mixture of 2-(4-methylsulfanylphenyl)acetohydrazide and 4-chlorobenzaldehyde was refluxed for four hours in the presence of few drops of acid catalyst and ethanol as solvent. The compound obtained was filtered, washed, dried and recrystalised from ethanol to yield brown blocks of (I).

Refinement

All hydrogen atoms were positioned geometrically [ C–H = 0.95 or 0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. An intramolecular hydrogen bond is shown by a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I).

Crystal data

C15H14Cl2N2OS F(000) = 1408
Mr = 341.24 Dx = 1.530 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9844 reflections
a = 28.5303 (3) Å θ = 2.7–35.2°
b = 7.4915 (1) Å µ = 0.58 mm1
c = 15.4789 (2) Å T = 100 K
β = 116.407 (1)° Block, brown
V = 2963.17 (6) Å3 0.44 × 0.25 × 0.13 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer 6673 independent reflections
Radiation source: fine-focus sealed tube 5955 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 35.4°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −45→46
Tmin = 0.783, Tmax = 0.928 k = −12→12
46944 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.7424P] where P = (Fo2 + 2Fc2)/3
6673 reflections (Δ/σ)max = 0.002
190 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.430128 (8) 0.28966 (3) 0.729616 (15) 0.02400 (5)
Cl2 0.269296 (8) 0.51920 (3) 0.790208 (13) 0.02382 (5)
S1 0.176998 (7) 0.57324 (3) 0.374212 (12) 0.01596 (4)
O1 0.11470 (2) 0.76041 (9) 0.52929 (4) 0.02178 (12)
N1 0.09082 (3) 0.72148 (9) 0.36763 (5) 0.01686 (11)
N2 0.08873 (3) 0.66216 (10) 0.21783 (4) 0.01825 (12)
C1 0.28809 (3) 0.46653 (11) 0.54975 (5) 0.01796 (13)
H1A 0.2688 0.4850 0.4822 0.022*
C2 0.33866 (3) 0.40104 (11) 0.58547 (6) 0.01884 (13)
H2A 0.3540 0.3774 0.5433 0.023*
C3 0.36659 (3) 0.37051 (10) 0.68400 (6) 0.01726 (12)
C4 0.34481 (3) 0.40355 (11) 0.74672 (5) 0.01740 (12)
H4A 0.3639 0.3797 0.8138 0.021*
C5 0.29438 (3) 0.47245 (10) 0.70876 (5) 0.01601 (12)
C6 0.26411 (3) 0.50678 (10) 0.60961 (5) 0.01517 (12)
C7 0.21245 (3) 0.58738 (10) 0.57455 (5) 0.01636 (12)
H7A 0.2028 0.6221 0.6235 0.020*
C8 0.17611 (3) 0.62056 (10) 0.48355 (5) 0.01523 (12)
C9 0.12450 (3) 0.70822 (10) 0.46399 (5) 0.01629 (12)
C10 0.11223 (3) 0.66071 (10) 0.31348 (5) 0.01553 (12)
C11 0.03308 (3) 0.71217 (13) 0.16554 (6) 0.02211 (15)
H11A 0.0227 0.7796 0.2093 0.027*
H11B 0.0114 0.6027 0.1450 0.027*
C12 0.02289 (3) 0.82567 (13) 0.07750 (6) 0.02274 (15)
H12A 0.0392 0.9444 0.0988 0.027*
H12B −0.0153 0.8434 0.0394 0.027*
C13 0.04478 (3) 0.73902 (13) 0.01359 (6) 0.02228 (15)
H13A 0.0257 0.6267 −0.0141 0.027*
H13B 0.0398 0.8202 −0.0403 0.027*
C14 0.10279 (3) 0.69973 (12) 0.07298 (6) 0.01982 (14)
H14A 0.1221 0.8133 0.0961 0.024*
H14B 0.1165 0.6393 0.0320 0.024*
C15 0.11176 (4) 0.58124 (12) 0.15908 (6) 0.02219 (15)
H15A 0.0958 0.4627 0.1359 0.027*
H15B 0.1498 0.5640 0.1991 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01844 (8) 0.02974 (10) 0.02435 (9) 0.00495 (7) 0.01001 (7) 0.00259 (7)
Cl2 0.01920 (9) 0.04116 (12) 0.01293 (7) 0.00453 (7) 0.00879 (6) 0.00332 (7)
S1 0.01586 (8) 0.02028 (8) 0.01193 (7) 0.00101 (6) 0.00634 (6) −0.00006 (6)
O1 0.0210 (3) 0.0317 (3) 0.0141 (2) 0.0032 (2) 0.0092 (2) −0.0011 (2)
N1 0.0159 (3) 0.0229 (3) 0.0124 (2) 0.0001 (2) 0.0069 (2) 0.0001 (2)
N2 0.0163 (3) 0.0272 (3) 0.0112 (2) 0.0023 (2) 0.0060 (2) 0.0005 (2)
C1 0.0199 (3) 0.0215 (3) 0.0134 (3) 0.0007 (3) 0.0083 (2) 0.0006 (2)
C2 0.0208 (3) 0.0212 (3) 0.0169 (3) 0.0014 (3) 0.0105 (3) 0.0005 (2)
C3 0.0165 (3) 0.0178 (3) 0.0180 (3) 0.0004 (2) 0.0081 (2) 0.0008 (2)
C4 0.0167 (3) 0.0204 (3) 0.0146 (3) −0.0003 (2) 0.0064 (2) 0.0014 (2)
C5 0.0164 (3) 0.0203 (3) 0.0125 (3) −0.0014 (2) 0.0075 (2) 0.0005 (2)
C6 0.0158 (3) 0.0175 (3) 0.0126 (3) −0.0016 (2) 0.0066 (2) 0.0004 (2)
C7 0.0166 (3) 0.0201 (3) 0.0127 (3) −0.0010 (2) 0.0068 (2) 0.0003 (2)
C8 0.0159 (3) 0.0178 (3) 0.0126 (3) −0.0014 (2) 0.0068 (2) −0.0002 (2)
C9 0.0164 (3) 0.0196 (3) 0.0133 (3) −0.0010 (2) 0.0070 (2) 0.0001 (2)
C10 0.0150 (3) 0.0189 (3) 0.0125 (3) −0.0008 (2) 0.0060 (2) 0.0003 (2)
C11 0.0155 (3) 0.0365 (4) 0.0139 (3) 0.0009 (3) 0.0061 (2) 0.0022 (3)
C12 0.0190 (3) 0.0339 (4) 0.0148 (3) 0.0050 (3) 0.0070 (3) 0.0033 (3)
C13 0.0230 (4) 0.0303 (4) 0.0133 (3) 0.0015 (3) 0.0078 (3) 0.0010 (3)
C14 0.0220 (3) 0.0245 (4) 0.0159 (3) 0.0008 (3) 0.0111 (3) −0.0006 (3)
C15 0.0252 (4) 0.0291 (4) 0.0138 (3) 0.0072 (3) 0.0100 (3) 0.0015 (3)

Geometric parameters (Å, °)

Cl1—C3 1.7357 (8) C6—C7 1.4560 (11)
Cl2—C5 1.7397 (7) C7—C8 1.3498 (10)
S1—C8 1.7402 (7) C7—H7A 0.9500
S1—C10 1.7839 (8) C8—C9 1.5148 (11)
O1—C9 1.2265 (9) C11—C12 1.5207 (12)
N1—C10 1.3186 (10) C11—H11A 0.9900
N1—C9 1.3722 (10) C11—H11B 0.9900
N2—C10 1.3261 (9) C12—C13 1.5296 (12)
N2—C15 1.4690 (10) C12—H12A 0.9900
N2—C11 1.4743 (11) C12—H12B 0.9900
C1—C2 1.3851 (11) C13—C14 1.5223 (12)
C1—C6 1.4075 (10) C13—H13A 0.9900
C1—H1A 0.9500 C13—H13B 0.9900
C2—C3 1.3900 (11) C14—C15 1.5252 (12)
C2—H2A 0.9500 C14—H14A 0.9900
C3—C4 1.3880 (11) C14—H14B 0.9900
C4—C5 1.3893 (11) C15—H15A 0.9900
C4—H4A 0.9500 C15—H15B 0.9900
C5—C6 1.4102 (10)
C8—S1—C10 88.74 (3) N1—C10—S1 117.13 (5)
C10—N1—C9 111.56 (6) N2—C10—S1 118.84 (6)
C10—N2—C15 122.99 (7) N2—C11—C12 111.35 (7)
C10—N2—C11 120.09 (6) N2—C11—H11A 109.4
C15—N2—C11 115.73 (6) C12—C11—H11A 109.4
C2—C1—C6 122.55 (7) N2—C11—H11B 109.4
C2—C1—H1A 118.7 C12—C11—H11B 109.4
C6—C1—H1A 118.7 H11A—C11—H11B 108.0
C1—C2—C3 118.91 (7) C11—C12—C13 111.84 (7)
C1—C2—H2A 120.5 C11—C12—H12A 109.2
C3—C2—H2A 120.5 C13—C12—H12A 109.2
C4—C3—C2 121.44 (7) C11—C12—H12B 109.2
C4—C3—Cl1 119.28 (6) C13—C12—H12B 109.2
C2—C3—Cl1 119.29 (6) H12A—C12—H12B 107.9
C3—C4—C5 118.17 (7) C14—C13—C12 109.79 (6)
C3—C4—H4A 120.9 C14—C13—H13A 109.7
C5—C4—H4A 120.9 C12—C13—H13A 109.7
C4—C5—C6 123.08 (7) C14—C13—H13B 109.7
C4—C5—Cl2 116.79 (5) C12—C13—H13B 109.7
C6—C5—Cl2 120.12 (6) H13A—C13—H13B 108.2
C1—C6—C5 115.83 (7) C13—C14—C15 110.80 (7)
C1—C6—C7 123.46 (7) C13—C14—H14A 109.5
C5—C6—C7 120.64 (7) C15—C14—H14A 109.5
C8—C7—C6 130.21 (7) C13—C14—H14B 109.5
C8—C7—H7A 114.9 C15—C14—H14B 109.5
C6—C7—H7A 114.9 H14A—C14—H14B 108.1
C7—C8—C9 121.03 (7) N2—C15—C14 110.69 (7)
C7—C8—S1 129.85 (6) N2—C15—H15A 109.5
C9—C8—S1 109.10 (5) C14—C15—H15A 109.5
O1—C9—N1 124.51 (7) N2—C15—H15B 109.5
O1—C9—C8 122.08 (7) C14—C15—H15B 109.5
N1—C9—C8 113.41 (6) H15A—C15—H15B 108.1
N1—C10—N2 124.03 (7)
C6—C1—C2—C3 1.25 (12) C7—C8—C9—O1 3.74 (12)
C1—C2—C3—C4 0.26 (12) S1—C8—C9—O1 −177.51 (7)
C1—C2—C3—Cl1 −179.63 (6) C7—C8—C9—N1 −175.99 (7)
C2—C3—C4—C5 −1.49 (12) S1—C8—C9—N1 2.77 (8)
Cl1—C3—C4—C5 178.41 (6) C9—N1—C10—N2 −178.19 (8)
C3—C4—C5—C6 1.30 (12) C9—N1—C10—S1 1.36 (9)
C3—C4—C5—Cl2 −177.86 (6) C15—N2—C10—N1 −175.15 (8)
C2—C1—C6—C5 −1.41 (12) C11—N2—C10—N1 −8.17 (12)
C2—C1—C6—C7 175.53 (8) C15—N2—C10—S1 5.31 (11)
C4—C5—C6—C1 0.10 (11) C11—N2—C10—S1 172.29 (6)
Cl2—C5—C6—C1 179.24 (6) C8—S1—C10—N1 0.25 (7)
C4—C5—C6—C7 −176.93 (7) C8—S1—C10—N2 179.82 (7)
Cl2—C5—C6—C7 2.21 (10) C10—N2—C11—C12 140.61 (8)
C1—C6—C7—C8 7.99 (13) C15—N2—C11—C12 −51.50 (10)
C5—C6—C7—C8 −175.21 (8) N2—C11—C12—C13 51.51 (10)
C6—C7—C8—C9 −179.51 (7) C11—C12—C13—C14 −55.21 (10)
C6—C7—C8—S1 2.03 (13) C12—C13—C14—C15 56.91 (10)
C10—S1—C8—C7 177.01 (8) C10—N2—C15—C14 −139.08 (8)
C10—S1—C8—C9 −1.60 (5) C11—N2—C15—C14 53.41 (10)
C10—N1—C9—O1 177.67 (8) C13—C14—C15—N2 −55.37 (9)
C10—N1—C9—C8 −2.61 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···S1 0.95 2.49 3.2260 (8) 134
C4—H4A···O1i 0.95 2.40 3.3080 (9) 160
C15—H15A···O1ii 0.99 2.57 3.2778 (11) 129

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6435).

References

  1. Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., Kang, S. K., Jeong, D. G., Jung, S. K., Lee, S. H., Kim, H. M., Park, S. K., Lee, K. H., Lee, C. W., Ryu, S. E. & Choi, J. K. (2006). Bioorg. Med. Chem. Lett. 16, 2996–2999.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Geronikaki, A., Eleftheriou, P., Vicini, P., Alam, I., Dixit, A. & Saxena, A. K. (2008). J. Med. Chem. 51, 5221–5228. [DOI] [PubMed]
  7. Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A. & Lesyk, R. (2009). Eur. J. Med. Chem. 44, 1396–1404. [DOI] [PubMed]
  8. Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641–648. [DOI] [PubMed]
  9. Lesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547–1577.
  10. Park, H., Jung, S. K., Jeong, D. G., Ryu, S. E. & Kim, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2250–2255. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Zimenkovsky, B., Kazmirchuk, G., Zaprutko, L., Paraskiewicz, A., Melzer, E. & Lesyk, R. (2005). Pol. Chem. Soc. 1, 69–72.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040785/hb6435sup1.cif

e-67-o2884-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040785/hb6435Isup2.hkl

e-67-o2884-Isup2.hkl (320.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040785/hb6435Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES