Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2885–o2886. doi: 10.1107/S1600536811040797

(2E)-2-(4-Fluoro­benzyl­idene)hydrazinecarboxamide

Hoong-Kun Fun a,*,, Tze Shyang Chia a, Shridhar Malladi b, Arun M Isloor b, Kammasandra N Shivananda c
PMCID: PMC3247616  PMID: 22219921

Abstract

In the title compound, C8H8FN3O, the semicarbazide group is close to being planar, with a maximum deviation of 0.020 (1) Å, and subtends a dihedral angle of 16.63 (9)° with its attached fluoro­benzene ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming layers lying parallel to the bc plane.

Related literature

For background to semicarbazides and semicarbazones, see: Dogan et al. (1999); Pandeya & Dimmock (1993); Pandeya et al. (1998); Sriram et al. (2004); Yogeeswari et al. (2004); For further synthetic details, see: Furniss et al. (1978). For related structures, see: Fun et al. (2009a ,b ). For reference bond lengths, see: Allen et al. (1987).graphic file with name e-67-o2885-scheme1.jpg

Experimental

Crystal data

  • C8H8FN3O

  • M r = 181.17

  • Monoclinic, Inline graphic

  • a = 16.522 (2) Å

  • b = 4.4381 (6) Å

  • c = 11.9457 (15) Å

  • β = 103.478 (3)°

  • V = 851.80 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.72 × 0.18 × 0.12 mm

Data collection

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.923, T max = 0.987

  • 8746 measured reflections

  • 2418 independent reflections

  • 1657 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.209

  • S = 1.00

  • 2418 reflections

  • 130 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040797/hb6436sup1.cif

e-67-o2885-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040797/hb6436Isup2.hkl

e-67-o2885-Isup2.hkl (118.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040797/hb6436Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1i 0.88 (2) 2.07 (2) 2.8954 (19) 158 (2)
N2—H1N2⋯O1ii 0.92 (2) 2.00 (2) 2.9155 (19) 179 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Structure Determination of kDa Outer Membrane Proteins From S. typhi by X-ray Protein Crystallography Grant (No. 1001/PSKBP/8630013). AMI thanks Professor Sandeep Sanchethi, Director, National Institute of Technology-Karnataka, India, for providing research facilities and the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

supplementary crystallographic information

Comment

The semicarbazides, which are the raw material of semicarbazones, have been known to possess biological activities against many of the most common species of bacteria (Dogan et al., 1999). Semicarbazones are of much interest due to their wide spectrum of antibacterial activities (Pandeya & Dimmock, 1993). Recently some workers have reviewed the bioactivity of semicarbazones and they have exhibited anticonvulsant (Pandeya et al., 1998; Yogeeswari et al., 2004) and antitubercular (Sriram et al., 2004) properties. Accordingly and by considering the biological potential of semicarbazones, herein, we have synthesized the title compound to study its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The semicarbazone group (O1/N1–N3/C8) is essentially planar with maximum deviation of 0.020 (1) Å for atom N2. This plane makes dihedral angle of 16.63 (9)° with its terminal benzene ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2009a,b).

In the crystal structure (Fig. 2), the molecules are interconnected by N3—H1N3···O1 and N2—H1N2···O1 hydrogen bonds (Table 1) forming two-dimensional networks parallel to bc plane.

Experimental

Semicarbazide hydrochloride (0.86 g, 7.70 mmol) and freshly recrystallized sodium acetate (0.77 g, 9.40 mmol) were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, 4-fluorobenzaldehyde (0.896 g, 7.23 mmol) was added and the mixture was shaken well. A little alcohol was added to dissolve the turbidity. The mixture was shaken for a further 10 minutes and allowed to stand. The title compound crystallizes out on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from ethanol to yield colourless needles. Yield: 0.98 g, 75.38%. M.p.: 506–508 K.

Refinement

Atoms H1N2, H1N3 and H2N3 were located in a difference map and refined freely [N—H = 0.90 (2), 0.87 (2) and 0.91 (2) Å respectively]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.

Crystal data

C8H8FN3O F(000) = 376
Mr = 181.17 Dx = 1.413 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2666 reflections
a = 16.522 (2) Å θ = 2.5–29.4°
b = 4.4381 (6) Å µ = 0.11 mm1
c = 11.9457 (15) Å T = 296 K
β = 103.478 (3)° Needle, colourless
V = 851.80 (19) Å3 0.72 × 0.18 × 0.12 mm
Z = 4

Data collection

Bruker APEX DUO CCD diffractometer 2418 independent reflections
Radiation source: fine-focus sealed tube 1657 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 29.9°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −23→23
Tmin = 0.923, Tmax = 0.987 k = −6→6
8746 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1446P)2 + 0.0418P] where P = (Fo2 + 2Fc2)/3
2418 reflections (Δ/σ)max < 0.001
130 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.51936 (9) 1.2636 (4) 1.15848 (18) 0.1170 (6)
O1 1.01013 (7) 0.7059 (3) 0.87156 (9) 0.0508 (3)
N1 0.83497 (7) 0.8821 (3) 0.97516 (10) 0.0448 (3)
N2 0.90494 (8) 0.7354 (3) 0.96093 (11) 0.0470 (3)
N3 0.91237 (8) 1.0690 (3) 0.81619 (11) 0.0493 (4)
C1 0.71134 (11) 0.8578 (5) 1.18840 (15) 0.0637 (5)
H1A 0.7461 0.7333 1.2413 0.076*
C2 0.63885 (11) 0.9701 (6) 1.21288 (16) 0.0705 (5)
H2A 0.6244 0.9217 1.2814 0.085*
C3 0.58977 (12) 1.1518 (5) 1.1342 (2) 0.0740 (6)
C4 0.60851 (13) 1.2285 (6) 1.0325 (2) 0.0855 (7)
H4A 0.5735 1.3543 0.9805 0.103*
C5 0.68021 (11) 1.1161 (5) 1.00849 (17) 0.0669 (5)
H5A 0.6937 1.1662 0.9394 0.080*
C6 0.73235 (9) 0.9300 (4) 1.08559 (13) 0.0493 (4)
C7 0.80796 (9) 0.8014 (4) 1.06141 (13) 0.0504 (4)
H7A 0.8371 0.6560 1.1109 0.060*
C8 0.94581 (8) 0.8362 (3) 0.88136 (11) 0.0405 (3)
H1N3 0.9423 (12) 1.145 (5) 0.7725 (18) 0.064 (5)*
H1N2 0.9306 (12) 0.599 (5) 1.0133 (16) 0.061 (5)*
H2N3 0.8717 (14) 1.181 (5) 0.8357 (19) 0.074 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0854 (10) 0.1393 (14) 0.1524 (15) 0.0374 (9) 0.0807 (10) 0.0080 (10)
O1 0.0544 (6) 0.0586 (7) 0.0499 (6) 0.0023 (4) 0.0334 (5) −0.0022 (4)
N1 0.0447 (6) 0.0544 (7) 0.0417 (6) 0.0019 (5) 0.0228 (5) −0.0006 (5)
N2 0.0490 (7) 0.0566 (7) 0.0446 (7) 0.0073 (5) 0.0296 (5) 0.0048 (5)
N3 0.0569 (7) 0.0541 (7) 0.0457 (7) −0.0004 (5) 0.0299 (6) 0.0032 (5)
C1 0.0563 (9) 0.0936 (13) 0.0502 (9) 0.0081 (8) 0.0304 (7) 0.0076 (8)
C2 0.0662 (10) 0.0974 (15) 0.0620 (10) −0.0021 (9) 0.0438 (9) −0.0068 (10)
C3 0.0558 (10) 0.0863 (14) 0.0938 (15) 0.0098 (8) 0.0457 (10) −0.0057 (11)
C4 0.0695 (12) 0.1019 (16) 0.0965 (17) 0.0321 (11) 0.0423 (12) 0.0232 (13)
C5 0.0631 (10) 0.0820 (12) 0.0656 (11) 0.0196 (8) 0.0353 (8) 0.0179 (9)
C6 0.0457 (7) 0.0643 (9) 0.0448 (7) 0.0019 (6) 0.0244 (6) −0.0001 (6)
C7 0.0482 (8) 0.0673 (9) 0.0425 (8) 0.0090 (6) 0.0245 (6) 0.0085 (6)
C8 0.0461 (7) 0.0452 (7) 0.0361 (6) −0.0067 (5) 0.0215 (5) −0.0085 (5)

Geometric parameters (Å, °)

F1—C3 1.3568 (19) C1—H1A 0.9300
O1—C8 1.2393 (16) C2—C3 1.355 (3)
N1—C7 1.2661 (18) C2—H2A 0.9300
N1—N2 1.3714 (16) C3—C4 1.365 (3)
N2—C8 1.3634 (17) C4—C5 1.376 (2)
N2—H1N2 0.90 (2) C4—H4A 0.9300
N3—C8 1.3333 (18) C5—C6 1.379 (2)
N3—H1N3 0.87 (2) C5—H5A 0.9300
N3—H2N3 0.91 (2) C6—C7 1.4621 (19)
C1—C2 1.390 (2) C7—H7A 0.9300
C1—C6 1.389 (2)
C7—N1—N2 115.71 (12) C3—C4—C5 118.7 (2)
C8—N2—N1 119.96 (12) C3—C4—H4A 120.6
C8—N2—H1N2 118.4 (12) C5—C4—H4A 120.6
N1—N2—H1N2 120.3 (12) C4—C5—C6 120.79 (17)
C8—N3—H1N3 115.9 (13) C4—C5—H5A 119.6
C8—N3—H2N3 120.3 (14) C6—C5—H5A 119.6
H1N3—N3—H2N3 120 (2) C5—C6—C1 118.85 (14)
C2—C1—C6 120.56 (17) C5—C6—C7 122.08 (14)
C2—C1—H1A 119.7 C1—C6—C7 119.06 (15)
C6—C1—H1A 119.7 N1—C7—C6 121.99 (14)
C3—C2—C1 118.24 (16) N1—C7—H7A 119.0
C3—C2—H2A 120.9 C6—C7—H7A 119.0
C1—C2—H2A 120.9 O1—C8—N3 123.66 (12)
F1—C3—C2 118.27 (19) O1—C8—N2 119.18 (13)
F1—C3—C4 118.9 (2) N3—C8—N2 117.15 (12)
C2—C3—C4 122.86 (16)
C7—N1—N2—C8 −170.19 (13) C4—C5—C6—C7 178.57 (19)
C6—C1—C2—C3 −0.3 (3) C2—C1—C6—C5 0.3 (3)
C1—C2—C3—F1 −179.4 (2) C2—C1—C6—C7 −178.40 (17)
C1—C2—C3—C4 0.0 (4) N2—N1—C7—C6 −177.87 (13)
F1—C3—C4—C5 179.6 (2) C5—C6—C7—N1 8.7 (3)
C2—C3—C4—C5 0.2 (4) C1—C6—C7—N1 −172.65 (16)
C3—C4—C5—C6 −0.1 (4) N1—N2—C8—O1 178.19 (12)
C4—C5—C6—C1 −0.1 (3) N1—N2—C8—N3 −3.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···O1i 0.88 (2) 2.07 (2) 2.8954 (19) 158 (2)
N2—H1N2···O1ii 0.92 (2) 2.00 (2) 2.9155 (19) 179 (2)

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6436).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dogan, H. N., Duran, A. & Yemni, E. (1999). Drug Metab. Drug Interact. 15, 187–195. [DOI] [PubMed]
  4. Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591–o1592. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619–o1620. [DOI] [PMC free article] [PubMed]
  6. Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel’s Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.
  7. Pandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659–666. [PubMed]
  8. Pandeya, S. N., Misra, V., Singh, P. N. & Rupainwar, D. C. (1998). Pharmacology, 37, 17–22. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Sriram, D., Yogeeswari, P. & Thirumurugan, R. S. (2004). Bioorg. Med. Chem. Lett. 14, 3923–3924. [DOI] [PubMed]
  12. Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040797/hb6436sup1.cif

e-67-o2885-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040797/hb6436Isup2.hkl

e-67-o2885-Isup2.hkl (118.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040797/hb6436Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES