Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2889. doi: 10.1107/S1600536811040852

1,3-Bis(2-meth­oxy­phen­yl)thio­urea

Jason van Rooyen a, Richard Betz a,*, Bernardus J A M van Brecht a
PMCID: PMC3247619  PMID: 22219924

Abstract

In the title compound, C15H16N2O2S, the N–C(=S) bond lengths are indicative of the presence of amide-type resonance. The dihedral angles between the thio­urea unit and the attached aromatic rings are 59.80 (5) and 73.41 (4)° while the dihedral angle between the rings is 56.83 (4)°. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds occur. An N—H⋯π inter­action is observed for the second amino group. The shortest centroid–centroid distance between two aromatic systems is 4.0958 (8) Å.

Related literature

For related structures, see: Shashidhar et al. (2006); Muhammed et al. (2007); Kuan & Tiekink (2007); Srivastava et al. (2010). For further synthetic details, see: Voss & Walter (1968). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For general information about coordination chemistry, see: Gade (1998). Structures containing similar bond lengths were retrieved from the Cambridge Structural Database (Allen, 2002).graphic file with name e-67-o2889-scheme1.jpg

Experimental

Crystal data

  • C15H16N2O2S

  • M r = 288.36

  • Monoclinic, Inline graphic

  • a = 14.3187 (8) Å

  • b = 12.8628 (7) Å

  • c = 16.1168 (10) Å

  • β = 103.790 (3)°

  • V = 2882.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.42 × 0.36 × 0.14 mm

Data collection

  • Bruker SMART CCD diffractometer

  • 10474 measured reflections

  • 3567 independent reflections

  • 2765 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.090

  • S = 1.05

  • 3567 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040852/hb6427sup1.cif

e-67-o2889-sup1.cif (17.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811040852/hb6427Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040852/hb6427Isup3.hkl

e-67-o2889-Isup3.hkl (175KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040852/hb6427Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H72⋯S1i 0.831 (16) 2.506 (17) 3.3343 (12) 174.3 (14)
N1—H71⋯Cg1ii 0.782 (16) 2.967 (18) 3.5127 (13) 129.1 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Marc van der Vyver for helpful discussions.

supplementary crystallographic information

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound, 1,3-bis(2-methoxyphenyl)thiourea, (I), seemed of interest due to its possible use as a strictly neutral or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the set-up of its functional groups, it may act as mono- or multidentate ligand offering the possibility to create chelate rings of various size. The intriguing combination of a secondary amino group, a thioketo group as well as methylether groups classifies the title compound as a highly versatile ligand. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. Information about the crystal structure of 1,3-bis(4-methoxyphenyl)thiourea (Shashidhar et al., 2006), 1,3-bis(2-methylphenyl)thiourea, (Muhammed et al., 2007; Kuan & Tiekink, 2007) and 1,3-bis(phenyl)thiourea (Srivastava et al., 2010) is available in the literature.

N–C=S bond lengths (dN–C: 1.3469 (15) Å and 1.3488 (16) Å, respectively) are in good agreement with values deposited for comparable compounds with the Cambridge Structural Database (Allen, 2002) and are indicative of admide-type resonance between the atoms of this entity. This finding is further corroborated by the planarity of the S=CN2 moiety (r.m.s. of all fitted atoms = 0.0015 Å). The aromatic substituents on the nitrogen atom adopt syn and anti conformation with respect to the sulfur atom. The least-squares planes defined by the carbon atoms of the respective phenyl rings enclose an angle of 56.83 (4) ° while the individual planes defined by the phenyl rings intersect with the least-squares plane defined by the atoms of the central S=CN2 moiety at angles of 59.80 (5) ° and 73.41 (4) ° (Fig. 1, Fig. 2).

In the crystal, the hydrogen atoms of the secondary amine groups participate in two different types of intermolecular interactions. While one of the protons is part of a classical hydrogen bond of the N–H···S type, the other amine group's hydrogen atom forms a contact to one of the aromatic systems. The classical hydrogen bonds connect the molecules to centrosymmetric dimers orientated approximately perpendicular to the crystallographic b axis. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is R22(8) on the unitary level. The shortest intercentroid distance between two aromatic systems was measured at 4.0958 (8) Å (Fig. 3).

The packing of the title compound in the crystal structure is shown in Figure 4.

Experimental

The title compound was prepared upon reacting Lawesson's reagent with the corresponding amide in analogy to a published procedure (Voss & Walter, 1968).

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Statistical distribution of N(H)–C(=S) bond lengths in thiourea-derived amides (data based on CSD search including all deposited crystal structures up to August 2011).

Fig. 3.

Fig. 3.

Intermolecular contacts, viewed along [0 1 0]. Symmetry operator: i -x, y, -z + 1/2.

Fig. 4.

Fig. 4.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C15H16N2O2S Z = 8
Mr = 288.36 F(000) = 1216
Monoclinic, C2/c Dx = 1.329 Mg m3
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 14.3187 (8) Å µ = 0.23 mm1
b = 12.8628 (7) Å T = 173 K
c = 16.1168 (10) Å Plate, colourless
β = 103.790 (3)° 0.42 × 0.36 × 0.14 mm
V = 2882.8 (3) Å3

Data collection

Bruker SMART CCD diffractometer 2765 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.058
graphite θmax = 28.3°, θmin = 2.2°
φ and ω scans h = −16→19
10474 measured reflections k = −14→17
3567 independent reflections l = −17→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.1621P] where P = (Fo2 + 2Fc2)/3
3567 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.01726 (2) 0.20091 (3) 0.11713 (2) 0.02289 (10)
O1 0.09218 (7) 0.42621 (7) −0.03050 (6) 0.0323 (2)
O2 0.24916 (6) 0.20317 (7) 0.36118 (6) 0.0291 (2)
N1 0.14650 (8) 0.28483 (9) 0.09695 (7) 0.0251 (3)
H71 0.1955 (12) 0.3130 (13) 0.1153 (10) 0.036 (5)*
N2 0.12052 (7) 0.29144 (9) 0.23257 (7) 0.0232 (2)
H72 0.0931 (11) 0.2653 (11) 0.2676 (10) 0.028 (4)*
C1 0.08967 (8) 0.26236 (9) 0.15016 (8) 0.0197 (3)
C11 0.12847 (8) 0.25261 (10) 0.00981 (8) 0.0223 (3)
C12 0.10350 (9) 0.32650 (10) −0.05553 (8) 0.0238 (3)
C13 0.09201 (9) 0.29468 (11) −0.14003 (9) 0.0288 (3)
H13 0.0771 0.3444 −0.1849 0.035*
C14 0.10227 (9) 0.19063 (12) −0.15889 (9) 0.0307 (3)
H14 0.0929 0.1695 −0.2168 0.037*
C15 0.12589 (10) 0.11744 (11) −0.09458 (9) 0.0311 (3)
H15 0.1324 0.0463 −0.1079 0.037*
C16 0.14008 (9) 0.14937 (11) −0.00994 (9) 0.0281 (3)
H16 0.1579 0.0998 0.0347 0.034*
C17 0.06484 (12) 0.50262 (12) −0.09648 (10) 0.0408 (4)
H171 0.1170 0.5116 −0.1257 0.061*
H172 0.0523 0.5689 −0.0712 0.061*
H173 0.0066 0.4796 −0.1377 0.061*
C21 0.20704 (8) 0.34620 (10) 0.26996 (8) 0.0215 (3)
C22 0.27304 (8) 0.30070 (10) 0.33908 (8) 0.0218 (3)
C23 0.35552 (9) 0.35490 (11) 0.37961 (8) 0.0257 (3)
H23 0.3997 0.3251 0.4272 0.031*
C24 0.37282 (9) 0.45274 (11) 0.35004 (9) 0.0287 (3)
H24 0.4298 0.4889 0.3770 0.034*
C25 0.30840 (10) 0.49852 (10) 0.28199 (9) 0.0299 (3)
H25 0.3210 0.5655 0.2623 0.036*
C26 0.22491 (9) 0.44499 (11) 0.24273 (9) 0.0267 (3)
H26 0.1797 0.4765 0.1968 0.032*
C27 0.31264 (10) 0.15497 (12) 0.43256 (10) 0.0358 (3)
H271 0.3761 0.1461 0.4205 0.054*
H272 0.2869 0.0869 0.4430 0.054*
H273 0.3185 0.1989 0.4832 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01794 (15) 0.03006 (19) 0.02002 (17) −0.00105 (12) 0.00324 (11) −0.00245 (13)
O1 0.0424 (6) 0.0268 (5) 0.0263 (5) 0.0036 (4) 0.0056 (4) 0.0003 (4)
O2 0.0276 (5) 0.0279 (5) 0.0269 (5) −0.0045 (4) −0.0032 (4) 0.0055 (4)
N1 0.0220 (5) 0.0345 (7) 0.0186 (6) −0.0060 (5) 0.0046 (4) −0.0010 (5)
N2 0.0198 (5) 0.0333 (6) 0.0162 (5) −0.0042 (4) 0.0035 (4) 0.0021 (5)
C1 0.0190 (5) 0.0199 (6) 0.0193 (6) 0.0044 (4) 0.0026 (5) 0.0035 (5)
C11 0.0195 (5) 0.0302 (7) 0.0183 (6) −0.0015 (5) 0.0065 (5) −0.0004 (6)
C12 0.0218 (6) 0.0275 (7) 0.0225 (7) 0.0000 (5) 0.0059 (5) −0.0017 (5)
C13 0.0274 (6) 0.0381 (8) 0.0206 (7) 0.0024 (6) 0.0052 (5) 0.0017 (6)
C14 0.0256 (6) 0.0439 (9) 0.0233 (7) −0.0013 (6) 0.0072 (5) −0.0096 (6)
C15 0.0312 (7) 0.0299 (8) 0.0354 (8) −0.0016 (5) 0.0144 (6) −0.0063 (6)
C16 0.0277 (6) 0.0292 (7) 0.0296 (8) −0.0007 (5) 0.0112 (5) 0.0018 (6)
C17 0.0526 (9) 0.0313 (8) 0.0366 (9) 0.0041 (7) 0.0067 (7) 0.0071 (7)
C21 0.0201 (5) 0.0267 (7) 0.0181 (6) −0.0015 (5) 0.0056 (5) −0.0035 (5)
C22 0.0225 (6) 0.0226 (6) 0.0205 (6) −0.0003 (5) 0.0056 (5) −0.0025 (5)
C23 0.0230 (6) 0.0308 (8) 0.0214 (7) 0.0010 (5) 0.0016 (5) −0.0049 (6)
C24 0.0267 (6) 0.0289 (8) 0.0306 (8) −0.0052 (5) 0.0074 (6) −0.0120 (6)
C25 0.0367 (7) 0.0210 (7) 0.0342 (8) −0.0026 (5) 0.0129 (6) −0.0032 (6)
C26 0.0293 (6) 0.0263 (7) 0.0246 (7) 0.0035 (5) 0.0067 (5) −0.0002 (6)
C27 0.0371 (7) 0.0326 (8) 0.0321 (8) 0.0016 (6) −0.0027 (6) 0.0081 (7)

Geometric parameters (Å, °)

S1—C1 1.6923 (12) C15—H15 0.9500
O1—C12 1.3658 (16) C16—H16 0.9500
O1—C17 1.4324 (17) C17—H171 0.9800
O2—C22 1.3695 (15) C17—H172 0.9800
O2—C27 1.4266 (16) C17—H173 0.9800
N1—C1 1.3469 (15) C21—C26 1.3879 (19)
N1—C11 1.4275 (16) C21—C22 1.4053 (17)
N1—H71 0.782 (16) C22—C23 1.3928 (17)
N2—C1 1.3488 (16) C23—C24 1.3887 (19)
N2—C21 1.4277 (15) C23—H23 0.9500
N2—H72 0.831 (16) C24—C25 1.385 (2)
C11—C16 1.3848 (18) C24—H24 0.9500
C11—C12 1.4003 (18) C25—C26 1.3939 (19)
C12—C13 1.3937 (19) C25—H25 0.9500
C13—C14 1.388 (2) C26—H26 0.9500
C13—H13 0.9500 C27—H271 0.9800
C14—C15 1.381 (2) C27—H272 0.9800
C14—H14 0.9500 C27—H273 0.9800
C15—C16 1.392 (2)
C12—O1—C17 117.11 (11) O1—C17—H172 109.5
C22—O2—C27 117.21 (10) H171—C17—H172 109.5
C1—N1—C11 124.69 (11) O1—C17—H173 109.5
C1—N1—H71 118.9 (12) H171—C17—H173 109.5
C11—N1—H71 116.2 (12) H172—C17—H173 109.5
C1—N2—C21 126.87 (11) C26—C21—C22 119.49 (11)
C1—N2—H72 117.3 (10) C26—C21—N2 121.67 (11)
C21—N2—H72 114.6 (10) C22—C21—N2 118.75 (11)
N1—C1—N2 117.50 (11) O2—C22—C23 124.96 (12)
N1—C1—S1 122.59 (10) O2—C22—C21 115.17 (11)
N2—C1—S1 119.91 (9) C23—C22—C21 119.87 (12)
C16—C11—C12 120.07 (12) C24—C23—C22 119.56 (12)
C16—C11—N1 120.07 (12) C24—C23—H23 120.2
C12—C11—N1 119.79 (12) C22—C23—H23 120.2
O1—C12—C13 124.73 (12) C25—C24—C23 121.17 (12)
O1—C12—C11 116.24 (11) C25—C24—H24 119.4
C13—C12—C11 119.02 (13) C23—C24—H24 119.4
C14—C13—C12 120.20 (13) C24—C25—C26 119.12 (13)
C14—C13—H13 119.9 C24—C25—H25 120.4
C12—C13—H13 119.9 C26—C25—H25 120.4
C15—C14—C13 120.84 (13) C21—C26—C25 120.76 (13)
C15—C14—H14 119.6 C21—C26—H26 119.6
C13—C14—H14 119.6 C25—C26—H26 119.6
C14—C15—C16 119.12 (13) O2—C27—H271 109.5
C14—C15—H15 120.4 O2—C27—H272 109.5
C16—C15—H15 120.4 H271—C27—H272 109.5
C11—C16—C15 120.70 (13) O2—C27—H273 109.5
C11—C16—H16 119.6 H271—C27—H273 109.5
C15—C16—H16 119.6 H272—C27—H273 109.5
O1—C17—H171 109.5
C11—N1—C1—N2 174.85 (11) N1—C11—C16—C15 −177.83 (11)
C11—N1—C1—S1 −5.62 (18) C14—C15—C16—C11 1.57 (19)
C21—N2—C1—N1 1.47 (19) C1—N2—C21—C26 60.94 (18)
C21—N2—C1—S1 −178.08 (10) C1—N2—C21—C22 −122.51 (14)
C1—N1—C11—C16 −71.93 (16) C27—O2—C22—C23 1.70 (18)
C1—N1—C11—C12 111.13 (14) C27—O2—C22—C21 −178.28 (11)
C17—O1—C12—C13 1.17 (18) C26—C21—C22—O2 −179.98 (11)
C17—O1—C12—C11 −178.84 (12) N2—C21—C22—O2 3.39 (16)
C16—C11—C12—O1 179.11 (11) C26—C21—C22—C23 0.04 (18)
N1—C11—C12—O1 −3.95 (16) N2—C21—C22—C23 −176.59 (11)
C16—C11—C12—C13 −0.90 (17) O2—C22—C23—C24 178.63 (11)
N1—C11—C12—C13 176.04 (11) C21—C22—C23—C24 −1.39 (19)
O1—C12—C13—C14 −177.99 (12) C22—C23—C24—C25 1.41 (19)
C11—C12—C13—C14 2.02 (18) C23—C24—C25—C26 −0.1 (2)
C12—C13—C14—C15 −1.4 (2) C22—C21—C26—C25 1.34 (19)
C13—C14—C15—C16 −0.4 (2) N2—C21—C26—C25 177.86 (12)
C12—C11—C16—C15 −0.89 (18) C24—C25—C26—C21 −1.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.
D—H···A D—H H···A D···A D—H···A
N2—H72···S1i 0.831 (16) 2.506 (17) 3.3343 (12) 174.3 (14)
N1—H71···Cg1ii 0.782 (16) 2.967 (18) 3.5127 (13) 129.1 (14)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6427).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.
  7. Kuan, F. S. & Tiekink, E. R. T. (2007). Acta Cryst. E63, o4692.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Muhammed, N., Zia-ur-Rehman, Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, o634–o635.
  10. Shashidhar, Thiruvenkatam, V., Shivashankar, S. A., Halli, M. B. & Guru Row, T. N. (2006). Acta Cryst. E62, o1518–o1519.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Srivastava, P. C., Dwivedi, S., Singh, V. & Butcher, R. J. (2010). Polyhedron, 29, 2202–2212.
  14. Voss, J. & Walter, W. (1968). Justus Liebigs Ann. Chem. 716, 209–211.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040852/hb6427sup1.cif

e-67-o2889-sup1.cif (17.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811040852/hb6427Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040852/hb6427Isup3.hkl

e-67-o2889-Isup3.hkl (175KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040852/hb6427Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES